The desulfurater(BaAl2O4) was successfully synthesized with BaCO3 and Al(OH)3 powders as raw materials by microwave sintering method.The mass loss of raw materials and the characterization of the outcome were investig...The desulfurater(BaAl2O4) was successfully synthesized with BaCO3 and Al(OH)3 powders as raw materials by microwave sintering method.The mass loss of raw materials and the characterization of the outcome were investigated by means of TG-DSC,XRD and optical microscopy.The reaction mechanism was discussed.The experimental results show that synthesized BaAl2O4 by microwave sintering method is feasible.Compared with conventional sintering method,microwave sintering is a better way to synthesize BaAl2O4 with advantages of low temperature sintering,short time sintering and high synthesis rate.展开更多
W-Ag has applications in a wide range of cutting-edge fields,counting heat sinks and microwave absorbers for micro—electronic components,electric arc ends,and filaments for welding processes,electrical contacts,and d...W-Ag has applications in a wide range of cutting-edge fields,counting heat sinks and microwave absorbers for micro—electronic components,electric arc ends,and filaments for welding processes,electrical contacts,and durable electronic connections.Chemical methods provide a number of benefits,including improved purity,and controlled particle size.The present study focused on the fabrication of W-Ag nano composites using chemical synthesis.W-Ag nanocomposites with average size less than 50 nm were synthesized using Tungsten hexacarbonyl(W(CO)_(6),and silver acetate(CH_(3)-COOAg)as metal precursors in the present study.The W-Ag composites were sintered using conventional sintering.X-ray diffraction studies of as-prepared powders showed amorphous W-phase and FCC Ag,while sintered W-Ag composites exhibited crystalline BCC W and FCC Ag phase.The effect of sintering temperature on relative density and mechanical properties of W-Ag sintered compacts was investigated.Relative density in excess of 97.6%,98.2%and 98.8%was achieved for W-20.3 wt.%Ag,W-30.1 wt.%Ag and W-39.8 wt.%Ag composites on conventional sintering at 1000℃ for 1 h.Vickers hardness of 364±10 and 320±8 Hv and 279±6 were achieved for W-20.3 wt.%Ag,W-30.1 wt.%Ag and W-39.8 wt.%Ag composite compacts respectively.The hardness value of W-Ag composites decreased with an increase in Ag content.The combination of properties realized in this study renders the composites suitable for automotive and heat sink applications.展开更多
基金Project(50264001) supported by the National Natural Science Foundation of ChinaProject(QKH-J-2008-2009) supported by Guizhou Science and Technology Department, China
文摘The desulfurater(BaAl2O4) was successfully synthesized with BaCO3 and Al(OH)3 powders as raw materials by microwave sintering method.The mass loss of raw materials and the characterization of the outcome were investigated by means of TG-DSC,XRD and optical microscopy.The reaction mechanism was discussed.The experimental results show that synthesized BaAl2O4 by microwave sintering method is feasible.Compared with conventional sintering method,microwave sintering is a better way to synthesize BaAl2O4 with advantages of low temperature sintering,short time sintering and high synthesis rate.
文摘W-Ag has applications in a wide range of cutting-edge fields,counting heat sinks and microwave absorbers for micro—electronic components,electric arc ends,and filaments for welding processes,electrical contacts,and durable electronic connections.Chemical methods provide a number of benefits,including improved purity,and controlled particle size.The present study focused on the fabrication of W-Ag nano composites using chemical synthesis.W-Ag nanocomposites with average size less than 50 nm were synthesized using Tungsten hexacarbonyl(W(CO)_(6),and silver acetate(CH_(3)-COOAg)as metal precursors in the present study.The W-Ag composites were sintered using conventional sintering.X-ray diffraction studies of as-prepared powders showed amorphous W-phase and FCC Ag,while sintered W-Ag composites exhibited crystalline BCC W and FCC Ag phase.The effect of sintering temperature on relative density and mechanical properties of W-Ag sintered compacts was investigated.Relative density in excess of 97.6%,98.2%and 98.8%was achieved for W-20.3 wt.%Ag,W-30.1 wt.%Ag and W-39.8 wt.%Ag composites on conventional sintering at 1000℃ for 1 h.Vickers hardness of 364±10 and 320±8 Hv and 279±6 were achieved for W-20.3 wt.%Ag,W-30.1 wt.%Ag and W-39.8 wt.%Ag composite compacts respectively.The hardness value of W-Ag composites decreased with an increase in Ag content.The combination of properties realized in this study renders the composites suitable for automotive and heat sink applications.