Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=in...Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=inf{s≥0:∑n≥1an^(-s)(x)<∞}.展开更多
In this article, we investigate the exponent of convergence of zeros of solutions for some higher-order homogeneous linear differential equation, and prove that if Ak-1 is the dominant coefficient, then every transcen...In this article, we investigate the exponent of convergence of zeros of solutions for some higher-order homogeneous linear differential equation, and prove that if Ak-1 is the dominant coefficient, then every transcendental solution f(z) of equation……satisfies )λ(f) =∞, where A(f) denotes the exponent of convergence of zeros of the meromor- phic function f(z).展开更多
In this paper, by using the Nevanlinna Theory on angular domain, we establish a theorem which concerns the growth of entire function and his zero. As an application, we survey the location of zero of higher order diff...In this paper, by using the Nevanlinna Theory on angular domain, we establish a theorem which concerns the growth of entire function and his zero. As an application, we survey the location of zero of higher order differential equation, which can be regarded as an alternating but precise version of Wu and Yi.展开更多
In this paper, the sectorial oscillation of the solutions of higher order homo- geneous linear differential equationswith infinite order entire function coefficients is studied. Results are obtained to extend some res...In this paper, the sectorial oscillation of the solutions of higher order homo- geneous linear differential equationswith infinite order entire function coefficients is studied. Results are obtained to extend some results in [19] and [18].展开更多
In this paper, we investigate the properties of solutions of some linear difference equations with meromorphic coefficients, and obtain some estimates on growth and value distribution of these meromorphic solutions.
This present paper investigates the complex oscillation theory of certain high non-homogeneous linear differential equations and obtains a series of new results.
In this paper, we investigate complex homogeneous and non-homogeneous higher order linear differential equations with meromorphic coefficients. We obtain several results concerning the iterated order of meromorphic so...In this paper, we investigate complex homogeneous and non-homogeneous higher order linear differential equations with meromorphic coefficients. We obtain several results concerning the iterated order of meromorphic solutions, and the iterated convergence exponent of the zeros of meromorphic solutions.展开更多
Let f be a transcendental meromorphic function and g(z)=f(z+c1)+f(z+c2)-2f(z) and g2(z)=f(z+c1)·f(z+c2)-f2(z).The exponents of convergence of zeros of differences g(z),g2(z),g(z)/f(z),and g2(z)/f2(z) are estimate...Let f be a transcendental meromorphic function and g(z)=f(z+c1)+f(z+c2)-2f(z) and g2(z)=f(z+c1)·f(z+c2)-f2(z).The exponents of convergence of zeros of differences g(z),g2(z),g(z)/f(z),and g2(z)/f2(z) are estimated accurately.展开更多
In this paper, we investigate the complex oscillation of the differential equation f<sup>k</sup>+A<sub>k-1</sub>f<sup>k-1</sup>+…+A<sub>O</sub>f=F where A<sub>k-1...In this paper, we investigate the complex oscillation of the differential equation f<sup>k</sup>+A<sub>k-1</sub>f<sup>k-1</sup>+…+A<sub>O</sub>f=F where A<sub>k-1</sub>.…, A<sub>o</sub> F 0 are finite order transcendental entire functions, such that there exists an A<sub>d</sub>(0≤d≤k-1) being dominant in the sense that either it has larger order than any other A<sub>j</sub>(j=0.…. d-l. d+l.…. k-1), or it is the only transcendental function. We obtain some precise estimates of the exponent of convergence of the zero-sequence of solutions to the above equation.展开更多
In this paper, some complex linear differential equations are investigated. Many results on the relation between solutions and their derivatives are obtained.
基金This research was supported by National Natural Science Foundation of China(11771153,11801591,11971195,12171107)Guangdong Natural Science Foundation(2018B0303110005)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515010056)Kunkun Song would like to thank China Scholarship Council(CSC)for financial support(201806270091).
文摘Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=inf{s≥0:∑n≥1an^(-s)(x)<∞}.
基金supported by the National Natura Science Foundation of China (11171119)Funding of Tianyuan (11226090)
文摘In this article, we investigate the exponent of convergence of zeros of solutions for some higher-order homogeneous linear differential equation, and prove that if Ak-1 is the dominant coefficient, then every transcendental solution f(z) of equation……satisfies )λ(f) =∞, where A(f) denotes the exponent of convergence of zeros of the meromor- phic function f(z).
文摘In this paper, by using the Nevanlinna Theory on angular domain, we establish a theorem which concerns the growth of entire function and his zero. As an application, we survey the location of zero of higher order differential equation, which can be regarded as an alternating but precise version of Wu and Yi.
基金supported by the NSF of Jiangxi Province(2010GZC0187)NSF of Educational Department of the Hubei Province(T201009,Q20112807)NFS of China(11201395)
文摘In this paper, the sectorial oscillation of the solutions of higher order homo- geneous linear differential equationswith infinite order entire function coefficients is studied. Results are obtained to extend some results in [19] and [18].
基金The NSF(11661044,11201195) of Chinathe NSF(20132BAB201008) of Jiangxi Province
文摘In this paper, we investigate the properties of solutions of some linear difference equations with meromorphic coefficients, and obtain some estimates on growth and value distribution of these meromorphic solutions.
基金Funded by the Natural Science Foundation of the Education Committee of Sichuan Province (2004A104).
文摘This present paper investigates the complex oscillation theory of certain high non-homogeneous linear differential equations and obtains a series of new results.
基金This work is supported by the National Natural Science Foundation of China (No.10161006)the Natural Science Foundation of Jiangxi Province (No.0311043).
文摘In this paper, we investigate complex homogeneous and non-homogeneous higher order linear differential equations with meromorphic coefficients. We obtain several results concerning the iterated order of meromorphic solutions, and the iterated convergence exponent of the zeros of meromorphic solutions.
基金supported by National Natural Science Foundation of China (Grant No. 10871076)Brain Pool Program of Korean Federation of Science and Technology Societies (Grant No. 072-1-3-0164)
文摘Let f be a transcendental meromorphic function and g(z)=f(z+c1)+f(z+c2)-2f(z) and g2(z)=f(z+c1)·f(z+c2)-f2(z).The exponents of convergence of zeros of differences g(z),g2(z),g(z)/f(z),and g2(z)/f2(z) are estimated accurately.
基金Project supported by the National Natural Science Foundation of China
文摘In this paper, we investigate the complex oscillation of the differential equation f<sup>k</sup>+A<sub>k-1</sub>f<sup>k-1</sup>+…+A<sub>O</sub>f=F where A<sub>k-1</sub>.…, A<sub>o</sub> F 0 are finite order transcendental entire functions, such that there exists an A<sub>d</sub>(0≤d≤k-1) being dominant in the sense that either it has larger order than any other A<sub>j</sub>(j=0.…. d-l. d+l.…. k-1), or it is the only transcendental function. We obtain some precise estimates of the exponent of convergence of the zero-sequence of solutions to the above equation.
文摘In this paper, some complex linear differential equations are investigated. Many results on the relation between solutions and their derivatives are obtained.