期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
The Monty Hall Problem and beyond: Digital-Mathematical and Cognitive Analysis in Boole’s Algebra, Including an Extension and Generalization to Related Cases 被引量:1
1
作者 Leo Depuydt 《Advances in Pure Mathematics》 2011年第4期136-154,共19页
The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approach... The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approaches are not necessarily mutually exclusive. The design of the present paper is to add one more approach by analyzing the mathematical structure of the Monty Hall problem in digital terms. The structure of the problem is described as much as possible in the tradition and the spirit—and as much as possible by means of the algebraic conventions—of George Boole’s Investigation of the Laws of Thought (1854), the Magna Charta of the digital age, and of John Venn’s Symbolic Logic (second edition, 1894), which is squarely based on Boole’s Investigation and elucidates it in many ways. The focus is not only on the digital-mathematical structure itself but also on its relation to the presumed digital nature of cognition as expressed in rational thought and language. The digital approach is outlined in part 1. In part 2, the Monty Hall problem is analyzed digitally. To ensure the generality of the digital approach and demonstrate its reliability and productivity, the Monty Hall problem is extended and generalized in parts 3 and 4 to related cases in light of the axioms of probability theory. In the full mapping of the mathematical structure of the Monty Hall problem and any extensions thereof, a digital or non-quantitative skeleton is fleshed out by a quantitative component. The pertinent mathematical equations are developed and presented and illustrated by means of examples. 展开更多
关键词 Binary Structure BOOLEAN algebra BOOLEAN operators Boole’s algebra Brain Science Cognition COGNITIVE Science Digital MATHEMATICS Electrical Engineering Linguistics Logic Non-Quantitative and QUANTITATIVE MATHEMATICS Monty HALL Problem Neuroscience probability Theory Rational Thought and Language
下载PDF
Ergodic Hypothesis and Equilibrium Statistical Mechanics in the Quantum Mechanical World View 被引量:4
2
作者 Shiro Ishikawa 《World Journal of Mechanics》 2012年第2期125-130,共6页
In this paper, we study and answer the following fundamental problems concerning classical equilibrium statistical mechanics: 1): Is the principle of equal a priori probabilities indispensable for equilibrium statisti... In this paper, we study and answer the following fundamental problems concerning classical equilibrium statistical mechanics: 1): Is the principle of equal a priori probabilities indispensable for equilibrium statistical mechanics? 2): Is the ergodic hypothesis related to equilibrium statistical mechanics? Note that these problems are not yet answered, since there are several opinions for the formulation of equilibrium statistical mechanics. In order to answer the above questions, we first introduce measurement theory (i.e., the theory of quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics. And we propose the measurement theoretical foundation of equili-brium statistical mechanics, and further, answer the above 1) and 2), that is, 1) is “No”, but, 2) is “Yes”. 展开更多
关键词 The Copenhagen interpretation probability operator algebra ERGODIC THEOREM Quantum and CLASSICAL Measurement Theory Liouville’s THEOREM The Law of inCREASinG Entropy
下载PDF
A Hierarchy of Compatibility and Comeasurability Levels in Quantum Logics with Unique Conditional Probabilities 被引量:1
3
作者 Gerd Niestegge 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第12期974-980,共7页
In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A m... In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases. 展开更多
关键词 quantum measurement conditional probability quantum logic operator algebras
下载PDF
Higher Variations of the Monty Hall Problem (3.0, 4.0) and Empirical Definition of the Phenomenon of Mathematics, in Boole’s Footsteps, as Something the Brain Does 被引量:1
4
作者 Leo Depuydt Richard D. Gill 《Advances in Pure Mathematics》 2012年第4期243-273,共31页
In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped i... In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that the brain does. It is generally assumed that mathematics is a property of nature or reality or whatever one may call it. There is not the slightest intention in this paper to falsify this assumption because it cannot be falsified, just as it cannot be empirically or positively proven. But there is no way that this assumption can be a factual observation. It can be no more than an altogether reasonable, yet fully secondary, inference derived mainly from the fact that mathematics appears to work, even if some may deem the fact of this match to constitute proof. On the deepest empirical level, mathematics can only be directly observed and therefore directly analyzed as an activity of the brain. The study of mathematics therefore becomes an essential part of the study of cognition and human intelligence. The reflections on mathematics as a phenomenon offered in the present article will serve as a prelude to planned articles on how to redefine the foundations of probability as one type of mathematics in cognitive fashion and on how exactly Boole’s theory of probability subsumes, supersedes, and completes classical probability theory. §§2-7 combined, on the one hand, and §9, on the other hand, are both self-sufficient units and can be read independently from one another. The ultimate design of the larger project of which this paper is part remains the increase of digitalization of the analysis of rational thought and language, that is, of (rational, not emotional) human intelligence. To reach out to other disciplines, an effort is made to describe the mathematics more explicitly than is usual. 展开更多
关键词 Artificial inTELLIGENCE Binary Structure BOOLEAN algebra BOOLEAN operators Boole’s algebra Brain Science Cognition Cognitive Science DEFinITION of MATHEMATICS DEFinITION of probability Theory Digital MATHEMATICS Electrical Engineering Foundations of MATHEMATICS Human inTELLIGENCE Linguistics Logic Monty HALL Problem Neuroscience Non-quantitative and Quantitative MATHEMATICS probability Theory Rational Thought and Language
下载PDF
CONVERGENCE RATES FOR A CLASS OF EVOLUTIONARY ALGORITHMS WITH ELITIST STRATEGY
5
作者 丁立新 康立山 《Acta Mathematica Scientia》 SCIE CSCD 2001年第4期531-540,共10页
This paper discusses the convergence rates about a class of evolutionary algorithms in general search spaces by means of the ergodic theory in Markov chain and some techniques in Banach algebra. Under certain conditio... This paper discusses the convergence rates about a class of evolutionary algorithms in general search spaces by means of the ergodic theory in Markov chain and some techniques in Banach algebra. Under certain conditions that transition probability functions of Markov chains corresponding to evolutionary algorithms satisfy, the authors obtain the convergence rates of the exponential order. Furthermore, they also analyze the characteristics of the conditions which can be met by genetic operators and selection strategies. 展开更多
关键词 convergence rate Markov chain Banach algebra genetic operator elitist selection evolutionary algorithms
下载PDF
进化神经网络中的变异算子研究 被引量:8
6
作者 郑志军 郑守淇 《软件学报》 EI CSCD 北大核心 2002年第4期726-731,共6页
针对进化神经网络中遗传算法收敛速度慢和容易早熟这两个难题,提出了一个启发性的变异算子.该算子采用了自适应的变异率和启发式的变异位的选择策略.在多代无进化时,通过提高变异率扩大搜索范围,同时减小变异量进行更细致的搜索.求解XO... 针对进化神经网络中遗传算法收敛速度慢和容易早熟这两个难题,提出了一个启发性的变异算子.该算子采用了自适应的变异率和启发式的变异位的选择策略.在多代无进化时,通过提高变异率扩大搜索范围,同时减小变异量进行更细致的搜索.求解XOR问题的实验表明,该算法既具有很快的收敛速度又能自动维持群体的多样性. 展开更多
关键词 遗传算法 进化 神经网络 启发式变异算子 多样性
下载PDF
关于非交换独立性和依概率收敛(英文) 被引量:1
7
作者 马秀娟 王利广 《曲阜师范大学学报(自然科学版)》 CAS 2007年第4期13-17,共5页
研究了依概率收敛和非交换独立性(单调独立性和布尔独立性)之间的关系.
关键词 单调独立性 布尔独立性 依概率收敛 算子代数
下载PDF
基于改进蚁群算法的多批次协同三维航迹规划 被引量:10
8
作者 高颖 陈旭 +1 位作者 周士军 郭淑霞 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第1期41-46,共6页
针对基本蚁群算法容易陷入局部寻优、收敛速度慢的缺陷以及解决多批次协同航迹规划问题的需要,提出了基于改进蚁群算法的多批次三维航迹规划算法。该算法采用基于加权排序的信息素更新规则,扩大各优劣蚂蚁的差异,提高了算法收敛速度,并... 针对基本蚁群算法容易陷入局部寻优、收敛速度慢的缺陷以及解决多批次协同航迹规划问题的需要,提出了基于改进蚁群算法的多批次三维航迹规划算法。该算法采用基于加权排序的信息素更新规则,扩大各优劣蚂蚁的差异,提高了算法收敛速度,并采用了一种信息素挥发系数的随机自适应调节方法,在确保收敛速度的同时使算法具有全局寻优,解决了基本蚁群算法容易过早陷入局部最优缺点;在此基础上,引入蚂蚁子群间多约束条件下的协同进化策略,解决了多批次协同三维航迹规划。仿真结果表明:改进的蚁群算法在运算效率和收敛性上明显优于基本蚁群算法,多批次协同航迹规划能有效提高无人机的作战效能。 展开更多
关键词 加权排序 自适应调节 多批次协同 三维航迹规划
下载PDF
基于改进发射率模型的多光谱测温方法 被引量:3
9
作者 冯驰 刘晓东 王兆丰 《应用科技》 CAS 2020年第5期45-52,共8页
为解决辐射测温时由于测温环境不同,发射率测量困难而引发的测量误差浮动较大的问题,研究了非支配排序遗传算法运用在光谱辐射测温时的精确性。分别从初始化种群、选择概率算子、交叉及变异算子等方面对该遗传算法进行改进,引入正态分... 为解决辐射测温时由于测温环境不同,发射率测量困难而引发的测量误差浮动较大的问题,研究了非支配排序遗传算法运用在光谱辐射测温时的精确性。分别从初始化种群、选择概率算子、交叉及变异算子等方面对该遗传算法进行改进,引入正态分布交叉算子,使其在进化前期拥有较高的多样性,并在后期实现快速收敛。引入考虑温差影响的发射率模型结合经典多光谱测温方法,采用六波长高温计进行数据分析,通过对比传统GA算法、经典非支配排序算法以及改进后的非支配排序算法分别应用于考虑温度影响与未考虑温度影响的发射率模型时的计算结果,从速度、精度、计算结果稳定性等方面进行了分析。结果表明,改进后的非支配排序遗传算法结合考虑温度因素的发射率模型后,能在保证处理时间的情况下,有效地改善数据处理效果,提高温度测量的准确性。 展开更多
关键词 多光谱测温 自适应概率 正态分布算子 非支配排序 发射率模型 辐射测温 快速收敛 高精度
下载PDF
依概率收敛的改进粒子群优化算法 被引量:1
10
作者 钱伟懿 李明 《智能系统学报》 CSCD 北大核心 2017年第4期511-518,共8页
粒子群优化算法是一种随机优化算法,但它不依概率1收敛到全局最优解。因此提出一种新的依概率收敛的粒子群优化算法。在该算法中,首先引入了具有探索和开发能力的两个变异算子,并依一定概率对粒子当前最好位置应用这两个算子,然后证明... 粒子群优化算法是一种随机优化算法,但它不依概率1收敛到全局最优解。因此提出一种新的依概率收敛的粒子群优化算法。在该算法中,首先引入了具有探索和开发能力的两个变异算子,并依一定概率对粒子当前最好位置应用这两个算子,然后证明了该算法是依概率1收敛到ε-最优解。最后,把该算法应用到13个典型的测试函数中,并与其他粒子群优化算法比较,数值结果表明所给出的算法能够提高求解精度和收敛速度。 展开更多
关键词 粒子群优化算法 随机优化算法 变异算子 依概率收敛 全局优化 进化计算 启发式算法 高斯分布
下载PDF
基于模式定理的遗传算法参数研究 被引量:3
11
作者 杨启文 吴秋玲 许向勇 《河海大学常州分校学报》 2004年第2期9-13,共5页
为了解决遗传算法(GAs)的参数选择问题,分析了自然进化各阶段对物种的影响,探讨了影响模式生存的各种因素,引入了模式形成概率(PCS)的概念.通过分析模式的形成概率对算法性能的影响,从理论上建立了遗传算法参数与其性能之间的联系.提出... 为了解决遗传算法(GAs)的参数选择问题,分析了自然进化各阶段对物种的影响,探讨了影响模式生存的各种因素,引入了模式形成概率(PCS)的概念.通过分析模式的形成概率对算法性能的影响,从理论上建立了遗传算法参数与其性能之间的联系.提出了一种基于逻辑算子的遗传算法(GALO),并在实验中从多方面对GALO进行性能测试.实验结果验证了理论分析的正确性. 展开更多
关键词 遗传算法 逻辑算子 早熟收敛 模式形成概率
下载PDF
基于代数模型的机电作动器Vague动态故障树分析 被引量:3
12
作者 王剑 曹宇燕 +2 位作者 李婷 谢蓉 王新民 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第6期977-983,共7页
结合Vague集理论和动态故障树分析方法,提出一种基于代数模型求解的Vague动态故障树的机电作动器可靠性分析方法。定义了动态故障树的时间算子,给出了动态逻辑门的代数模型,推导了运算律的证明;为了规范动态故障树顶事件的结构函数,给... 结合Vague集理论和动态故障树分析方法,提出一种基于代数模型求解的Vague动态故障树的机电作动器可靠性分析方法。定义了动态故障树的时间算子,给出了动态逻辑门的代数模型,推导了运算律的证明;为了规范动态故障树顶事件的结构函数,给出了最小割序集的规范化算法。底事件使用三角形Vague集可靠性数据充分考虑底事件概率水平的不确定性;用代数模型对动态故障树进行建模,具有通用性,考虑了故障发生的时序性更符合机电作动器的原理。将代数模型表达分解为静态和动态两部分分别进行分析,降低了计算量。分析结果表明了该方法可以有效地对机电作动器进行可靠性分析,为故障定位提供思路,更具灵活性。 展开更多
关键词 机电作动器 VAGUE集 动态故障树 代数模型 可靠性
下载PDF
一种混合算法在装配序列规划中的应用研究 被引量:1
13
作者 李明宇 吴波 胡友民 《机械科学与技术》 CSCD 北大核心 2014年第5期647-651,共5页
基于现有复杂产品装配序列的特点,建立了装配体的几何可行性、零件的重新定向次数及装配体稳定性的目标函数。在原有离散粒子群算法的基础上,引入改进的进化方向算子,该算子可较为突出的改进离散粒子群算法的局部搜索能力。提出了一种... 基于现有复杂产品装配序列的特点,建立了装配体的几何可行性、零件的重新定向次数及装配体稳定性的目标函数。在原有离散粒子群算法的基础上,引入改进的进化方向算子,该算子可较为突出的改进离散粒子群算法的局部搜索能力。提出了一种混合算法,该算法在不牺牲粒子群算法的局部搜索能力和搜索速度的同时,提高其全局搜索能力,减少算法平均迭代的步数。算例表明:该混合算法具有优良的局部搜索特性及全局搜索特性,算法可快速收敛至全局最优解,可有效解决装配序列规划问题。 展开更多
关键词 装配序列规划 混合算法 进化方向算子
下载PDF
Convergence in Conformal Field Theory
14
作者 Yi-Zhi HUANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2022年第6期1101-1124,共24页
Convergence and analytic extension are of fundamental importance in the mathematical construction and study of conformal field theory.The author reviews some main convergence results,conjectures and problems in the co... Convergence and analytic extension are of fundamental importance in the mathematical construction and study of conformal field theory.The author reviews some main convergence results,conjectures and problems in the construction and study of conformal field theories using the representation theory of vertex operator algebras.He also reviews the related analytic extension results,conjectures and problems.He discusses the convergence and analytic extensions of products of intertwining operators(chiral conformal fields)and of q-traces and pseudo-q-traces of products of intertwining operators.He also discusses the convergence results related to the sewing operation and the determinant line bundle and a higher-genus convergence result.He then explains conjectures and problems on the convergence and analytic extensions in orbifold conformal field theory and in the cohomology theory of vertex operator algebras. 展开更多
关键词 Conformal field theory Vertex operator algebras Representation theory convergence Analytic extension
原文传递
取值于von Neumann代数的测度 被引量:2
15
作者 魏常果 《西安联合大学学报》 2000年第4期18-23,共6页
引入了取值于 von Neumann代数的测度 ,即算子测度 ;并研究了算子测度的 σ-弱可列可加性及延拓 .将 Kluvanek延拓定理推广到 σ-弱可列可加测度 。
关键词 算子测度 σ-弱可列可加性 von Neumann代数
下载PDF
一种基于逻辑代数模型的动态故障树不交化方法
16
作者 张竞凯 章卫国 +1 位作者 袁燎原 刘小雄 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第1期106-110,共5页
针对动态故障树的逻辑代数模型,提出一种不交化方法:在获得最小割序列或集合的基础上,通过对动态逻辑事件进行"非运算"和"反演"运算,推演出故障树逻辑代数模型的容-斥不交化形式,为其后的动态故障树定量分析提供有... 针对动态故障树的逻辑代数模型,提出一种不交化方法:在获得最小割序列或集合的基础上,通过对动态逻辑事件进行"非运算"和"反演"运算,推演出故障树逻辑代数模型的容-斥不交化形式,为其后的动态故障树定量分析提供有效的结构函数表达式。借助一个共享备件的双温贮备(WSP)系统案例的研究,可以体现出该种方法较之传统方法的优越性。 展开更多
关键词 逻辑代数模型 动态故障树 不交化 容斥方法
下载PDF
概率算子的性质及其应用
17
作者 丁承杰 《河南师范大学学报(自然科学版)》 CAS CSCD 1990年第1期11-16,共6页
本文给出了概率算子进一步的性质,并对其在弱收敛及其他方面的应用,得出一些结果。
关键词 随机变量 弱收敛 概率算子
下载PDF
一种基于模糊集和概率分布的不确定XML模型及其代数运算 被引量:4
18
作者 胡磊 严丽 《计算机科学》 CSCD 北大核心 2020年第7期21-30,共10页
XML作为一种信息表示和交换的事实标准已被广泛用作不同应用之间的统一数据交换格式,其在实际应用中已经发挥着重要的作用。由于现实中很多信息包含有不确定性,而经典的XML不能表示和处理不确定信息,因此有必要对经典XML模型进行扩展。... XML作为一种信息表示和交换的事实标准已被广泛用作不同应用之间的统一数据交换格式,其在实际应用中已经发挥着重要的作用。由于现实中很多信息包含有不确定性,而经典的XML不能表示和处理不确定信息,因此有必要对经典XML模型进行扩展。考虑到现实世界的复杂性,不确定信息往往同时包含有随机不确定性和模糊不确定,而概率理论和模糊集理论是处理不确定信息的有力工具,因此文中在现有的模糊XML和概率XML数据模型的基础上,综合利用概率和模糊理论建立一个新的不确定XML模型和相关代数,所提出的新的不确定性XML模型既能与现有的XML模型兼容,又能表达更复杂的不确定信息。 展开更多
关键词 XML模型 不确定数据模型 模糊集 概率分布 代数运算
下载PDF
概率算子测度弱收敛的一个充要条件
19
作者 丁杰 张景华 《南京理工大学学报》 EI CAS CSCD 北大核心 2003年第z1期66-68,共3页
该文在已有的结果和方法的基础之上给出了概率算子测度弱收敛的一个新的充要务件与已知的结论相比,多了一个f厂有界的限制,但少了f非负或f非正的假定。该文的结论从某种意义上更深一步地揭示了概率算子测度弱收敛定义的实质。。
关键词 概率算子测度 弱收敛 充要条件
下载PDF
C~*-代数之间正算子列的收敛性
20
作者 曹怀信 《陕西师大学报(自然科学版)》 CSCD 1991年第3期12-15,共4页
引入了C~*-代数A与B之间的广义-同态φ_n:A→B与φ:A→B在点α处的三种偏差:δ_n^(1) (α),δ_n^(2)(α)与δ_n^(3)(α),证明了若E■A且对任—x∈E,■δ_n^(i)(x)=0,则对任—x∈C~*(E)有■δ_n^(i)(x)=0,特别■φ_n(x)=φ(x),(i=2,3)。... 引入了C~*-代数A与B之间的广义-同态φ_n:A→B与φ:A→B在点α处的三种偏差:δ_n^(1) (α),δ_n^(2)(α)与δ_n^(3)(α),证明了若E■A且对任—x∈E,■δ_n^(i)(x)=0,则对任—x∈C~*(E)有■δ_n^(i)(x)=0,特别■φ_n(x)=φ(x),(i=2,3)。作为推论得到了古典逼近论的Korovkin定理。 展开更多
关键词 C^*-代数 正算子列 收敛性
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部