期刊文献+
共找到246篇文章
< 1 2 13 >
每页显示 20 50 100
Dynamic Properties and Energy Conversion Efficiency of A Floating Multi-Body Wave Energy Converter 被引量:3
1
作者 YANG Shao-hui WANG Yong-qing +2 位作者 HE Hong-zhou ZHANG Jun CHEN Hu 《China Ocean Engineering》 SCIE EI CSCD 2018年第3期347-357,共11页
The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodi... The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter’s physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency. 展开更多
关键词 Wave energy converter multi-point absorption conversion efficiency vibration properties
下载PDF
0.35%THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate 被引量:2
2
作者 Zhiqiang Yu Nan Zhang +5 位作者 Jianxin Wang Zijie Dai Cheng Gong Lie Lin Lanjun Guo Weiwei Liu 《Opto-Electronic Advances》 SCIE EI CAS 2022年第9期26-33,共8页
In this study,an optical setup for generating terahertz(THz)pulses through a two-color femtosecond laser filament was carefully designed to achieve a precise overlap of two-color laser pulses in space and time.β-bari... In this study,an optical setup for generating terahertz(THz)pulses through a two-color femtosecond laser filament was carefully designed to achieve a precise overlap of two-color laser pulses in space and time.β-barium borate(BBO),α-BBO,and a dual-wavelength plate were used to compensate the phase delay of the two-color lasers.Tilting ofα-BBO could further realize the precise spatial overlap of the two beams by counteracting the walk-off effect.The maximum out-put THz pulse energy reached 21μJ in argon gas when using a commercial Ti:sapphire laser with a pulse energy of 6 mJ at a 1 kHz repetition rate.The corresponding conversion efficiency exceeded 0.35%. 展开更多
关键词 femtosecond laser filaments walk-off effect conversion efficiency
下载PDF
Measurement of conversion efficiency of soft X-ray from 0.35μm laser-irradiated aluminum planar targets 被引量:1
3
作者 任树喜 马洪良 +1 位作者 易荣清 刘慎业 《Journal of Shanghai University(English Edition)》 CAS 2006年第3期224-227,共4页
Conversion efficiency of soft X-ray from 0.35μm pulse laser-irradiated aluminium planar target at laser intensities 10^13- 10^15 W/cm^2 on the Xingguang-Ⅱ facility (laser energy 5 - 90 J, focal spot - Φ 200μm ful... Conversion efficiency of soft X-ray from 0.35μm pulse laser-irradiated aluminium planar target at laser intensities 10^13- 10^15 W/cm^2 on the Xingguang-Ⅱ facility (laser energy 5 - 90 J, focal spot - Φ 200μm full width of half maximun (FWHM) 400 - 800 ps) was measured. A simple model was given to explain soft X-ray conversion efficiency. In this model, because of the heat conduction from the laser-heated spot, the conversion was very small at lower irradiance limit, while at higher limit it was bounded by the energy lost in blow off plasma. Consequently, at the laser intensity around 2×10^14 W/cm^2 , the X-ray conversion efficiency reaches a maximum. 展开更多
关键词 soft X-ray conversion efficiency heat conduction.
下载PDF
Temperature Effect on Light Concentration Silicon Solar Cell’s Operating Point and Conversion Efficiency 被引量:1
4
作者 Mahamadi Savadogo Boubacar Soro +4 位作者 Ramatou Konate Idrissa Sourabié Martial Zoungrana Issa Zerbo Dieudonné Joseph Bathiebo 《Smart Grid and Renewable Energy》 2020年第5期61-72,共12页
It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentra... It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (<i><span style="font-family:Verdana;">CPV</span></i><span style="font-family:Verdana;">). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. </span><span style="font-family:""><span style="font-family:Verdana;">This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (</span><i><span style="font-family:Verdana;">MPP</span></i><span style="font-family:Verdana;">) moves to the open circuit when the cell temperature increases.</span></span> 展开更多
关键词 TEMPERATURE Electric Power conversion efficiency Light Concentration Maximum Power Point Junction Dynamic Velocity
下载PDF
In situ determination on food consumption and ecological conversion efficiency of a marine fish species, Hyporhamphus sajori
5
作者 Sun Yao(孙耀) +5 位作者 Yu Miao(于淼) Zhang Bo(张波) Tang Oisheng(唐启升) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2002年第3期407-414,共8页
The food consumption and ecological conversion efficiency of a species marine pelagic andsmall size fish, Hyporhamphus sajori, were determined by using in situ stomach content method presented by Eggers. The results s... The food consumption and ecological conversion efficiency of a species marine pelagic andsmall size fish, Hyporhamphus sajori, were determined by using in situ stomach content method presented by Eggers. The results showed that: (1) the fish was taken in food all day, so empty-stomach rate was very low, taking up about 4.5% of the total determined fish number. However, the fish still has significant daily feeding rhythm. A feeding peak was found 0:00 o'clock at night, but feeding level was always high in the daytime; (2) relationship between instantaneous food content in stomach and corresponding time could be described as S_t = a · e (-b·t). There was not significant difference of instantaneous gastric evacuation rate between two determinations, with average value being 0.13 × 10^(-2) g/ (g' h) (wet weight); (3) the daily food consumption tended to change in irregular waving form, with average value being (10.16Xl0^(-2)±1.19xl0(-2) g/ (g·d) (wet weight) or (55.56 × 10(-2) ±6.51 × 10^(-2) kJ/ (g·d). The wave distance is constant and about 14 d, but the wave height changed largely; (4) actual determining value of daily growth rate was 3.24 × 10^(-2)g/ (g·d) (wet weight) or 12.91 × 10^(-2)kJ/ (g·d), from which 31.89% (wet weight) or 23.24% kJ of ecological conversion efficiency could be obtained. 展开更多
关键词 Food consumption GROWTH ecological conversion efficiency Hyporhamphus sajori
下载PDF
Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays
6
作者 王文娟 李冲 +4 位作者 周弘毅 武华 栾信信 史磊 郭霞 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期181-185,共5页
The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 ... The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 μm,19 μm,26 μm,29 μm,36 μm,39 μm,and 46 urn are fabricated and characterized,respectively.The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly.A maximum value of27.91%at an oxide-aperture of 18.6 μm is achieved by simulation.The experimental data are well consistent with the simulation results,which are analyzed by utilizing an empirical model. 展开更多
关键词 vertical-cavity surface-emitting laser arrays power conversion efficiency oxide-aperture
下载PDF
InxGa1-xN/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77%
7
作者 刘侍明 肖红领 +5 位作者 王权 闫俊达 占香蜜 巩稼民 王晓亮 王占国 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期185-188,共4页
We report on fabrication and photovoltaic characteristics of InxGa1-xN/GaN multiple quantum well solar cells with different indium compositions and barrier thicknesses. The as-grown samples are characterized by high- ... We report on fabrication and photovoltaic characteristics of InxGa1-xN/GaN multiple quantum well solar cells with different indium compositions and barrier thicknesses. The as-grown samples are characterized by high- resolution x-ray diffraction and reciprocal space mapping. The results show that the sample with a thick barrier thickness (lO.Onm) and high indium composition (0.23) has better crystalline quality. In addition, the dark current density-voltage (J-V) measurement of this device shows a significant decrease of leakage current, which leads to high open-circuit voltage Vow. Through the J-V characteristics under an Air Mass 1.5 Global (AM 1.5 G) illumination, this device exhibits a Voc of 1.89 V, a short-circuit current density Ysc of 3.92mA/cm2 and a fill factor of 50.96%. As a result, the conversion efficiency (77) is enhanced to be 3.77% in comparison with other devices. 展开更多
关键词 GAN In_xGa x)N/GaN Multiple Quantum Well Solar Cells with conversion efficiency of 3.77
下载PDF
A Study of Energy Conversion Efficiency Versus Plasma Density by Lower Hybrid Current Drive in HT-7 Tokamak
8
作者 丁伯江 匡光力 +14 位作者 刘岳修 刘登成 单家方 刘甫坤 沈慰慈 石跃江 吴振伟 林建安 俞家文 徐汉东 商连全 张晓东 刘小宁 赵燕平 李建刚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第3期1269-1274,共6页
Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 1.0% has been achieve... Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 1.0% has been achieved during the ramp-up phase. The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current, which is mainly dominated by the competition of impurity concentration with wave accessibility condition. In addition, the effect of current profile may play an important role in determining the conversion efficiency. 展开更多
关键词 LHCD In A Study of Energy conversion efficiency Versus Plasma Density by Lower Hybrid Current Drive in HT-7 Tokamak HT
下载PDF
Three-Dimensional Study of the Effect of the Angle of Incidence of a Magnetic Field on the Electrical Power and Conversion Efficiency of a Polycrystalline Silicon Solar Cell under Multispectral Illumination
9
作者 Idrissa Sourabié Vinci de Dieu Bokoyo Barandja +5 位作者 Mahamadi Savadogo Ramatou Konaté Alain Doua Gnabahou Martial Zoungra Issa Zerbo Frédéric Ouattara 《Smart Grid and Renewable Energy》 CAS 2022年第12期295-304,共10页
A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of... A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field. 展开更多
关键词 Angle of Incidence Magnetic Field Electric Power Bifacial Solar Cell conversion efficiency
下载PDF
Improvement of the conversion efficiency of Mg_(3)Sb_(2)thermoelectric devices through optimizing the resistivity of the MgSbNi barrier layer
10
作者 Huimin Zhang Yachao Wang +3 位作者 Zuhair A.Munir Yongzhong Zhang Wenhao Fan Shaoping Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期208-214,共7页
Mg_(3)Sb_(2)-based thermoelectric materials have been the focus of widespread investigations as promising candidates for the harvesting of waste heat.Interface stability and service performance are key points for the ... Mg_(3)Sb_(2)-based thermoelectric materials have been the focus of widespread investigations as promising candidates for the harvesting of waste heat.Interface stability and service performance are key points for the commercial applications of these materials.We utilized Mg_(4.3)Sb_(3)Ni as a barrier layer to improve the thermal stability of Mg 3 Sb 2-based devices.However,its intrinsic high resistivity contributed nega-tively to the desired performance of the device.In this work,we investigated two other Mg-Sb-Ni ternary phases,MgSbNi and MgSbNi_(2),as new barrier layer materials to connect with Mg_(3.2)Sb_(2)Y_(0.05).The results show that the efficiency of the Mg_(1.2)SbNi/Mg_(3.2)Sb_(2)Y_(0.05)/Mg_(1.2)SbNi joint is increased by 33%relative to the higher Mg-content barriers due to lower resistivity.The system exhibited good interfacial compatibility and showed little change with aging at 673 K for 20 days. 展开更多
关键词 Mg_(3)Sb_(2) Mg_(1.2)SbNi Barrier layer conversion efficiency
原文传递
P-doped all-small-molecule organic solar cells with power conversion efficiency of 17.73%
11
作者 Wanying Feng Kangqiao Ma +10 位作者 Guangkun Song Tianyin Shao Huazhe Liang Shudi Lu Yu Chen Guankui Long Chenxi Li Xiangjian Wan Zhaoyang Yao Bin Kan Yongsheng Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第8期2371-2379,共9页
All-small organic solar cells(ASM OSCs)inherit the advantages of the distinct merits of small molecules,such as well-defined structures and less batch-to-batch variation.In comparison with the rapid development of pol... All-small organic solar cells(ASM OSCs)inherit the advantages of the distinct merits of small molecules,such as well-defined structures and less batch-to-batch variation.In comparison with the rapid development of polymer-based OSCs,more efforts are needed to devote to improving the performance of ASM OSCs to close the performance gap between ASM and polymer-based OSCs.Herein,a well-known p-dopant named fluoro-7,7,8,8-tetracyano-p-quinodimethane(FTCNQ)was introduced to a highefficiency system of HD-1:BTP-e C9,and a high power conversion efficiency(PCE)of 17.15%was achieved due to the improved electrical properties as well as better morphology of the active layer,supported by the observed higher fill factor(FF)of 79.45%and suppressed non-radiative recombination loss.Furthermore,combining with the further morphology optimization from solvent additive of 1-iodonaphthalene(IN)in the blend film,the HD-1:BTP-e C9-based device with the synergistic effects of both FTCNQ and IN demonstrates a remarkable PCE of 17.73%(certified as 17.49%),representing the best result of binary ASM OSCs to date. 展开更多
关键词 organic solar cells all-small-molecule power conversion efficiency p-dopant
原文传递
Enhancing the crystallinity and stability of perovskite solar cells with 4-tert-butylpyridine induction for efficiency exceeding 24%
12
作者 You Liu Lishuang Zheng +15 位作者 Kuanxiang Zhang Kun Xu Weicheng Xie Jue Zhang Yulu Tian Tianyuan Liu Hanzhong Xu Ruoming Ma Wei Huang Jiahui Chen Jusheng Bao Chen Chen Yongsheng Zhou Xuchun Wang Junming Chen Jungan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期1-7,I0001,共8页
Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such ... Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module. 展开更多
关键词 4-tert-butylpyridine Film crystallization Perovskite solar cells Power conversion efficiency Stability improvement
下载PDF
Efficient conversion of acoustic vortex using extremely anisotropic metasurface
13
作者 Zhanlei Hao Haojie Chen +3 位作者 Yuhang Yin Cheng-Wei Qiu Shan Zhu Huanyang Chen 《Frontiers of physics》 SCIE CSCD 2024年第4期257-264,共8页
Vortex wave and plane wave,as two most fundamental forms of wave propagation,are widely applied in various research fields.However,there is currently a lack of basic mechanism to enable arbitrary conversion between th... Vortex wave and plane wave,as two most fundamental forms of wave propagation,are widely applied in various research fields.However,there is currently a lack of basic mechanism to enable arbitrary conversion between them.In this paper,we propose a new paradigm of extremely anisotropic acoustic metasurface(AM)to achieve the efficient conversion from 2D vortex waves with arbitrary orbital angular momentum(OAM)to plane waves.The underlying physics of this conversion process is ensured by the symmetry shift of AM medium parameters and the directional compensation of phase.Moreover,this novel phenomenon is further verified by analytical calculations,numerical demonstrations,and acoustic experiments,and the deflection angle and direction of the converted plane waves are qualitatively and quantitatively confirmed by a simple formula.Our work provides new possibilities for arbitrary manipulation of acoustic vortex,and holds potential applications in acoustic communication and OAM-based devices. 展开更多
关键词 efficient wave conversion vortex wave plane wave orbital angular momentum acoustic metasurface
原文传递
Ternary organic solar cells offer 14% power conversion efficiency 被引量:50
14
作者 Zuo Xiao Xue Jia Liming Ding 《Science Bulletin》 SCIE EI CAS CSCD 2017年第23期1562-1564,共3页
Organic solar cells(OSCs)have advantages like light-weight,flexibility,colorfulness and solution processability[1].The active layer of OSCs generally contains two organic semiconductors:an electron donor and an electr... Organic solar cells(OSCs)have advantages like light-weight,flexibility,colorfulness and solution processability[1].The active layer of OSCs generally contains two organic semiconductors:an electron donor and an electron acceptor.The donor and acceptor make nanoscale phase separation to allow efficient exciton dissociation and also form a three-dimensional(3D)passage to 展开更多
关键词 PTB BM PCE power conversion efficiency Ternary organic solar cells offer 14
原文传递
Thermally confined shell coating amplifies the photoacoustic conversion efficiency of nanoprobes 被引量:7
15
作者 Yujiao Shi Huan Qin +1 位作者 Sihua Yang Da Xing 《Nano Research》 SCIE EI CAS CSCD 2016年第12期3644-3655,共12页
Efficient probes/contrast agents are highly desirable for good-performance photoacoustic (PA) imaging, where the PA signal amplitude of a probe is dominated by both its optical absorption and the conversion efficien... Efficient probes/contrast agents are highly desirable for good-performance photoacoustic (PA) imaging, where the PA signal amplitude of a probe is dominated by both its optical absorption and the conversion efficiency from absorbed laser energy to acoustic waves. Nanoprobes have a unique micro- mechanism of PA energy conversion due to the size effect, which, however, has not been quantitatively demonstrated and effectively utilized. Here, we present quantitative simulations of the PA signal production process for plasmon- mediated nanoprobes based on the finite element analysis method, which were performed to provide a deep understanding of their PA conversion micromechanism. Moreover, we propose a method to amplify the PA conversion efficiency of nanoprobes through the use of thermally confined shell coating, which allows the active control of the conversion efficiency beyond that of conventional probes. Additionally, we deduced the dependence of the conversion efficiency on the shell properties. Gold-nanoparticles/polydimethylsiloxane nanocomposites were experimentally synthesized in the form of gel and microfilms to verify our idea and the simulation results agreed with the experiments. Our work paves the way for the rational design and optimization of nanoprobes with improved conversion efficiency. 展开更多
关键词 photoacousticnanoprobes micromechanism conversion efficiency shell coating
原文传递
Numerical study of hydrodynamic behavior and conversion efficiency of a two-buoy wave energy converter 被引量:7
16
作者 杨岑 张永良 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第2期235-248,共14页
In this paper we propose a two-buoy wave energy converter composed of a heaving semi-submerged cylindrical buoy, a fixed submerged cylindrical buoy and a power take-off(PTO) system, and investigate the effect of the... In this paper we propose a two-buoy wave energy converter composed of a heaving semi-submerged cylindrical buoy, a fixed submerged cylindrical buoy and a power take-off(PTO) system, and investigate the effect of the fixed submerged buoy on the hydrodynamics of the heaving semi-submerged buoy based on the three-dimensional potential theory. And the dynamic response of the semi-submerged buoy and the wave energy conversion efficiency of the converter are analyzed. The difference of the hydrodynamics and the wave energy conversion efficiency of a semi-submerged buoy converter with and without a fixed submerged buoy is discussed. It is revealed that the influence of the fixed submerged buoy on the exciting wave force, the added mass, the radiation damping coefficient and the wave energy conversion efficiency can be significant with a considerable variation, depending on the vertical distance between the heaving semi-submerged buoy and the fixed submerged buoy, the diameter ratio of the fixed submerged buoy to the heaving semi-submerged buoy and the water depth. 展开更多
关键词 Wave energy converter two-buoy HYDRODYNAMICS conversion efficiency fluid-structure interaction power take-off
原文传递
Energy Conversion Efficiency of Rainbow Shape Piezoelectric Transducer 被引量:3
17
作者 LIU Xiangjian CHEN Renwen ZHU Liya 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第5期691-697,共7页
With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoe... With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory. It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and ma- terial properties from the analysis model. Simulation results show that there is an optimal length ratio to generate maximum en- ergy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate trans- ducer and steel substrate transducer are (0.65, 2.21%) and (0.65, 1.64%) respectively. The optimal thickness ratios and energy conversion efficieneies of beryllium bronze substrate transducer and steel substrate transducer are (1.16, 2.56%) and (1.49, 1.57%) respectively. With the increase of width ratio and initial curvature radius, both the energy conversion efficiencies de- crease. Moreover, beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer. 展开更多
关键词 energy conversion efficiency rainbow shape piezoelectric transducer theoretical analysis energy harvesting elec-tromechanical coupling coefficient
原文传递
New insight into photoacoustic conversion efficiency by plasmon-mediated nanocavitation: Implications for precision theranostics 被引量:3
18
作者 Yujiao Shi Sihua Yang Da Xing 《Nano Research》 SCIE EI CAS CSCD 2017年第8期2800-2809,共10页
The probe-assisted integration of imaging and therapy into a single modality offers significant advantages in bio-applications. As a newly developed photoacoustic (PA) mechanism, plasmon-mediated nanocavitation, whe... The probe-assisted integration of imaging and therapy into a single modality offers significant advantages in bio-applications. As a newly developed photoacoustic (PA) mechanism, plasmon-mediated nanocavitation, whereby photons are effectively converted into PA shockwaves, has excellent advantages for image-guided therapy. In this study, by simulating the laser absorption, temperature field, and nanobubble dynamics using both finite-element analysis and computational fluid dynamics, we quantified the cavitation-induced PA conversion efficiency of a water-immersed gold nanosphere, revealing new insights. Interestingly, sequential multi-bubble emission accompanied by high PA signal production occur under a single high-dose pulse of laser irradiation, enabling a cavitation-induced PA conversion efficiency up to 2%, which is -50 times higher than that due to thermal expansion. The cavitation-induced PA signal has unique frequency characteristics, which may be useful for a new approach for in vivo nanoparticle tracking. Our work offers theoretical guidance for accurate diagnosis and controllable therapy based on plasmon-mediated nanocavitation. 展开更多
关键词 photoacoustic imaging conversion efficiency nanocavitation THERANOSTICS
原文传递
Vacancy-defect-dipole amplifies the thermoacoustic conversion efficiency of carbon nanoprobes 被引量:2
19
作者 Wei Fang Yujiao Shi Da Xing 《Nano Research》 SCIE EI CAS CSCD 2020年第9期2413-2419,共7页
The immense potential of carbon nanoprobes(CNPs)for using as contrast agents has propelled much recent research and development in the field of thermoacoustic(TA)molecular imaging,while the proper engineering and desi... The immense potential of carbon nanoprobes(CNPs)for using as contrast agents has propelled much recent research and development in the field of thermoacoustic(TA)molecular imaging,while the proper engineering and design of such materials with required high TA conversion efficiency is still a highly challenging task.In this work,we proposed a controllable strategy to amplify the TA conversion efficiency of the CNPs by constructing vacancy defect(VD)dipoles,and systematically demonstrated the amplification mechanism through theoretical and experimental investigations.First-principles calculation results indicate that,when a carbon atom is removed from the CNPs by chemical approach,owing to local electron density redistribution,the VDs are formed at the positions of the original carbon atoms and act as the structural origin of permanent electric dipoles with the dipole moment several orders higher than that of non-defect sites.Under pulsed microwave irradiation,the VD dipoles are polarized repeatedly and significantly contribute to the conversion efficiency from absorbed electromagnetic waves to ultrasound through enhanced dielectric relaxation losses.We experimentally synthesized graphene samples with different VD densities and VD types to demonstrate the efficiency of the proposed strategy,and results coincide well with the theoretical proposition.This work offers feasible guidance to the systematic development and rational design of new high-conversion-efficiency TA CNPs via VD engineering. 展开更多
关键词 thermoacoustic conversion efficiency vacancy-defect carbon nanoprobes
原文传递
A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon photovoltaic system 被引量:1
20
作者 Zekun LIU Shuang YUAN +2 位作者 Yi YUAN Guojian LI Qiang WANG 《Frontiers in Energy》 SCIE CSCD 2021年第2期358-366,共9页
Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic... Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic (PV) cell and improve the utilization efficiency of solar energy, a hybrid system composed of the PV cell, a thermoelectric generator (TEG), and a water-cooled plate (WCP) was manufactured. The WCP cannot only cool the PV cell, but also effectively generate additional electric energy with the TEG using the waste heat of the PV cell. The changes in the efficiency and power density of the hybrid system were obtained by real time monitoring. The thermal and electrical tests were performed at different irradiations and the same experiment temperature of 22°C. At a light intensity of 1000 W/m2, the steady-state temperature of the PV cell decreases from 86.8°C to 54.1°C, and the overall efficiency increases from 15.6% to 21.1%. At a light intensity of 800 W/m2, the steady-state temperature of the PV cell decreases from 70°C to 45.8°C, and the overall efficiency increases from 9.28% to 12.59%. At a light intensity of 400 W/m2, the steady-state temperature of the PV cell decreases from 38.5°C to 31.5°C, and the overall efficiency is approximately 3.8%, basically remain unchanged. 展开更多
关键词 photovoltaic(PV) thermoelectric generator conversion efficiency hybrid energy systems water-cooled plate(WCP)
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部