To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was c...To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was conducted at the experimental station of Dongyang Institute of Maize Research in Zhejiang Province,China in 2009.The experiment consisted of six treatments with three replicates,and they were arranged in a completely randomized design,including no fertilization in paddy field (PCK),conventional fertilization in paddy field (PCF),formulated fertilization by soil testing in paddy field (PSTF),formulated fertilization by soil testing with organic manure in paddy field (PSTF+OF),conventional fertilization on upland (DCF),and formulated fertilization by soil testing with organic manure on upland (DSTF+OF).Soil nutrients,enzyme activity,microbial biomass and community structure were determined in 2015.The results showed that compared with no fertilization in paddy field (PCK),fertilization increased soil phosphorus and potassium content,and decreased pH value.No fertilization in paddy field (PCK) had no significant effect on soil culturable microorganisms in paddy field and upland,but formulated fertilization by soil testing with organic manure on upland (DSTF+OF) significantly increased the number of fungi.Formula fertilization by soil testing with organic manure (PSTF+OF) also significantly increased soil microbial biomass carbon and nitrogen in paddy field and upland.Moreover,fertilization had no significant effect on soil cellulase activity,but formula fertilization by soil testing with organic manure (PSTF+OF) significantly increased soil dehydrogenase and catalase activity.Therefore,long-term application of chemical fertilizer with organic fertilizer can effectively improve soil fertility.展开更多
Effects of different levels of compost application on the amounts and percentage distribution of organic N forms in whole soils and particle size fractions were investigated. Soil samples were collected from three plo...Effects of different levels of compost application on the amounts and percentage distribution of organic N forms in whole soils and particle size fractions were investigated. Soil samples were collected from three plots: (a) F, only chemical fertilizers;(b) F+LC, chemical fertilizers plus low level of compost;(c) F+HC, chemical fertilizers plus high level of compost. Each soil sample was divided into five fractions: coarse sand-sized aggregate (CSA), medium sand-sized aggregate (MSA), fine sand-sized aggregate (FSA), silt-sized aggregate (SIA) and clay-sized aggregate (CLA) fractions. The sand fractions were subdivided into decayed plants (DP) and mineral particles (MP). The amounts of total N and different organic N forms in the whole soils as well as size fractions generally increased with increasing the amount of compost. In the whole soils, percentage distribution of non-hydrolysable-N and amino sugar-N increased by compost application while the distribution values of the hydrolysable ammonium- N and unidentified-N decreased. The application did not affect the distribution degree of amino acid-N. In the size fractions, the distribution values of most organic N forms increased in the CSA-DP, MSA-DP and FSA-DP fractions by compost application. In the CLA fractions, the amounts and percentage distribution of organic N forms were the highest, although the application caused decreases in their distribution values. These findings indicate that the CLA fraction merit close attention as an important reservoir of various organic N.展开更多
This study was conducted to understand the effect of the livestock liquid fertilizer treatment at field-scale up to catchment-scale on the water quality properties. Cultivated paddy rice and upland plots located in Gy...This study was conducted to understand the effect of the livestock liquid fertilizer treatment at field-scale up to catchment-scale on the water quality properties. Cultivated paddy rice and upland plots located in Gyeonggi province, Korea were treated with two different liquid fertilizers, SP (Liquid fertilizer with storage process) and SCB (Liquid fertilizer with slurry composting and bio-filtration process). Plots with no fertilizer (control A) and chemical fertilizer (control B) were also prepared for comparison. Water quantity and quality were monitored at the catchment outlet for assessing the effect on water quality of stream water. As a result, the losses of N and P and the values of EC (Electronic Conductivity) in the surface drainage water from paddy rice plots treated with SP and SCB were higher than those from the control plots (A and B). In addition, the losses of N and P by the runoff water from upland plots with SP and SCB treatment were higher than those from control plots (A and B). The nutrient outflow from paddy rice fields and uplands with application of liquid pig manure was higher than those from the control plots (A and B). Particularly, the outflow from uplands may directly affect the water quality in neighboring streams. This caused the major eutrophication problem in stream water. In conclusion, it is necessary to establish the proper management practices to prevent the nutrient losses from agricultural fields and the pollutants against water environments.展开更多
Effect of long-term application (ca. 30 years) of compost at different levels on humus composi-tion of whole soils and their particle size frac-tions in a field subjected mainly to double cropping (barley and paddy ri...Effect of long-term application (ca. 30 years) of compost at different levels on humus composi-tion of whole soils and their particle size frac-tions in a field subjected mainly to double cropping (barley and paddy rice) was investi-gated. Soil samples were collected from three plots of different types of management: (a) F plot, only chemical fertilizers containing N, P and K were applied;(b) F+LC plot, both chemi-cal fertilizers and a low level of compost were applied;(c) F+HC plot, both chemical fertilizers and a high level of compost were applied (the amount of compost applied in the F+HC plot was three times larger than that applied in the F+LC plot). Each soil sample was divided into coarse sand- (CSA), medium sand-(MSA) and fine sand-(FSA) sized aggregate, silt-sized ag-gregate (SIA) and clay-sized aggregate (CLA) fractions by wet-sieving and sedimentation. In addition, the CSA and MSA fractions were sub-divided into “mineral particles” (MP) and “de-cayed plants” (DP) by a density fractionation. Humus composition was influenced depending upon the level of compost applied. The applica-tion induced an increase in the amounts of total humus (TH), humic acid (HA) and fulvic acid (FA) in the whole soil and many size fractions, par-ticularly, SIA fraction. The increase was re-markable in the F+HC plot. In the CSA and MSA fractions, the amounts of TH, HA and FA were much larger in the CSA- and MSA-DP fractions than in the CSA- and MSA-MP fractions. The amounts of TH, HA and FA in the SIA fraction were larger than those in the CLA fraction for the F+HC and F+LC plots, and the reverse was true for the F plot. On the other hand, the de-grees of humification of humic acids in whole soils and many size fractions, particularly SIA fraction, decreased by compost application. The decrease was markedly in the F+HC plot. These findings suggest that the SIA fraction play an important role in the quantitative and qualitative changes of humus, including HA and FA, as in-fluenced by a long-term compost application.展开更多
基金Supported by National Modern Agricultural Industrial Technology System(CARS-02-69)Major Agriculture Science Foundation of Upland Grain Crops Breeding of Zhejiang Province(2016C02050-9-1)Project for Training of Youth Talents of Zhejiang Academy of Agricultural Sciences(2015)
文摘To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was conducted at the experimental station of Dongyang Institute of Maize Research in Zhejiang Province,China in 2009.The experiment consisted of six treatments with three replicates,and they were arranged in a completely randomized design,including no fertilization in paddy field (PCK),conventional fertilization in paddy field (PCF),formulated fertilization by soil testing in paddy field (PSTF),formulated fertilization by soil testing with organic manure in paddy field (PSTF+OF),conventional fertilization on upland (DCF),and formulated fertilization by soil testing with organic manure on upland (DSTF+OF).Soil nutrients,enzyme activity,microbial biomass and community structure were determined in 2015.The results showed that compared with no fertilization in paddy field (PCK),fertilization increased soil phosphorus and potassium content,and decreased pH value.No fertilization in paddy field (PCK) had no significant effect on soil culturable microorganisms in paddy field and upland,but formulated fertilization by soil testing with organic manure on upland (DSTF+OF) significantly increased the number of fungi.Formula fertilization by soil testing with organic manure (PSTF+OF) also significantly increased soil microbial biomass carbon and nitrogen in paddy field and upland.Moreover,fertilization had no significant effect on soil cellulase activity,but formula fertilization by soil testing with organic manure (PSTF+OF) significantly increased soil dehydrogenase and catalase activity.Therefore,long-term application of chemical fertilizer with organic fertilizer can effectively improve soil fertility.
文摘Effects of different levels of compost application on the amounts and percentage distribution of organic N forms in whole soils and particle size fractions were investigated. Soil samples were collected from three plots: (a) F, only chemical fertilizers;(b) F+LC, chemical fertilizers plus low level of compost;(c) F+HC, chemical fertilizers plus high level of compost. Each soil sample was divided into five fractions: coarse sand-sized aggregate (CSA), medium sand-sized aggregate (MSA), fine sand-sized aggregate (FSA), silt-sized aggregate (SIA) and clay-sized aggregate (CLA) fractions. The sand fractions were subdivided into decayed plants (DP) and mineral particles (MP). The amounts of total N and different organic N forms in the whole soils as well as size fractions generally increased with increasing the amount of compost. In the whole soils, percentage distribution of non-hydrolysable-N and amino sugar-N increased by compost application while the distribution values of the hydrolysable ammonium- N and unidentified-N decreased. The application did not affect the distribution degree of amino acid-N. In the size fractions, the distribution values of most organic N forms increased in the CSA-DP, MSA-DP and FSA-DP fractions by compost application. In the CLA fractions, the amounts and percentage distribution of organic N forms were the highest, although the application caused decreases in their distribution values. These findings indicate that the CLA fraction merit close attention as an important reservoir of various organic N.
文摘This study was conducted to understand the effect of the livestock liquid fertilizer treatment at field-scale up to catchment-scale on the water quality properties. Cultivated paddy rice and upland plots located in Gyeonggi province, Korea were treated with two different liquid fertilizers, SP (Liquid fertilizer with storage process) and SCB (Liquid fertilizer with slurry composting and bio-filtration process). Plots with no fertilizer (control A) and chemical fertilizer (control B) were also prepared for comparison. Water quantity and quality were monitored at the catchment outlet for assessing the effect on water quality of stream water. As a result, the losses of N and P and the values of EC (Electronic Conductivity) in the surface drainage water from paddy rice plots treated with SP and SCB were higher than those from the control plots (A and B). In addition, the losses of N and P by the runoff water from upland plots with SP and SCB treatment were higher than those from control plots (A and B). The nutrient outflow from paddy rice fields and uplands with application of liquid pig manure was higher than those from the control plots (A and B). Particularly, the outflow from uplands may directly affect the water quality in neighboring streams. This caused the major eutrophication problem in stream water. In conclusion, it is necessary to establish the proper management practices to prevent the nutrient losses from agricultural fields and the pollutants against water environments.
文摘Effect of long-term application (ca. 30 years) of compost at different levels on humus composi-tion of whole soils and their particle size frac-tions in a field subjected mainly to double cropping (barley and paddy rice) was investi-gated. Soil samples were collected from three plots of different types of management: (a) F plot, only chemical fertilizers containing N, P and K were applied;(b) F+LC plot, both chemi-cal fertilizers and a low level of compost were applied;(c) F+HC plot, both chemical fertilizers and a high level of compost were applied (the amount of compost applied in the F+HC plot was three times larger than that applied in the F+LC plot). Each soil sample was divided into coarse sand- (CSA), medium sand-(MSA) and fine sand-(FSA) sized aggregate, silt-sized ag-gregate (SIA) and clay-sized aggregate (CLA) fractions by wet-sieving and sedimentation. In addition, the CSA and MSA fractions were sub-divided into “mineral particles” (MP) and “de-cayed plants” (DP) by a density fractionation. Humus composition was influenced depending upon the level of compost applied. The applica-tion induced an increase in the amounts of total humus (TH), humic acid (HA) and fulvic acid (FA) in the whole soil and many size fractions, par-ticularly, SIA fraction. The increase was re-markable in the F+HC plot. In the CSA and MSA fractions, the amounts of TH, HA and FA were much larger in the CSA- and MSA-DP fractions than in the CSA- and MSA-MP fractions. The amounts of TH, HA and FA in the SIA fraction were larger than those in the CLA fraction for the F+HC and F+LC plots, and the reverse was true for the F plot. On the other hand, the de-grees of humification of humic acids in whole soils and many size fractions, particularly SIA fraction, decreased by compost application. The decrease was markedly in the F+HC plot. These findings suggest that the SIA fraction play an important role in the quantitative and qualitative changes of humus, including HA and FA, as in-fluenced by a long-term compost application.