Cooking fumes (CFs) are mixtures of many toxic components, such as aldehydes, heterocyclic amines, polycyclic aromatic hydrocarbons, fat aerosols and particulate matters. CFs exposure has been proven to be associate...Cooking fumes (CFs) are mixtures of many toxic components, such as aldehydes, heterocyclic amines, polycyclic aromatic hydrocarbons, fat aerosols and particulate matters. CFs exposure has been proven to be associated with many diseases. Lung cancer takes the leading place among the diseases being reported caused by CFs exposure. Molecular and biochemical studies have found that CFs exposure may lead to lung cancer by gene damage, formation of reactive oxygen species, blockage of related proteins’ function, and even cell death. However, reviews about the mechanisms of how CFs exposure leads to lung cancer are still lacking. Elucidation of the mechanisms of lung cancer caused by CFs exposure may provide a new insight into the prevention of lung cancer caused by CFs exposure, as well as laying the foundation for the toxicity study of CFs. In this minor review, the mechanisms of how CFs exposure leads to lung cancer were summarized and discussed.展开更多
Five monolithic catalysts with low noble metal content were prepared by irnmerge method (Pt/γ=Al2O3, Pt/La-Al2O3, Pt/YSZ-AI203, Pt+Pd/La-Al2O3 and Pd/La-Al2O3) and their activity measurements were carried out in a...Five monolithic catalysts with low noble metal content were prepared by irnmerge method (Pt/γ=Al2O3, Pt/La-Al2O3, Pt/YSZ-AI203, Pt+Pd/La-Al2O3 and Pd/La-Al2O3) and their activity measurements were carried out in a conventional fixed-bed flow reactor. The results show that La-Al2O3 can promote activity of the prepared catalysts and can decrease the complete conversion temperature of cooking fume. The Pt/La-Al2O3 catalyst has the highest activity and can be applied in wide range of gas hourly space velocity (GHSV). Some characterizations (XRD, TPR) were carried out with the objective to explain differences in catalytic behaviors. The prepared catalyst showed a great potential for application.展开更多
Four monolithic catalysts with low concentration of noble metal were prepared by the immersion method [ Pt/La- Al2O3, Pt/La-Al2O3 + Pt/OSM (2 : 1 ), Pt/La-Al2O3 + Pt/OSM ( 1 : 1 ) Pt/La-Al2O3 + Pt/OSM ( 1 ...Four monolithic catalysts with low concentration of noble metal were prepared by the immersion method [ Pt/La- Al2O3, Pt/La-Al2O3 + Pt/OSM (2 : 1 ), Pt/La-Al2O3 + Pt/OSM ( 1 : 1 ) Pt/La-Al2O3 + Pt/OSM ( 1 : 2) ], and measurements of their activity were carded out in a conventional fixed-bed flow reactor. The results show that the oxygen storage material (OSM) that is added can promote the activity of the prepared catalysts and can decrease the complete conversion temperature of cooking fume. When the ratio between La-Al2O3 and OSM is 1 : 1, the catalyst has the highest activity, and the complete conversion temperature of cooking fume is 270℃ ; the catalyst thus prepared can be applied in a wide range of gas hourly space velocity (GHSV) [from 10000 to 60000 h^-1]. The catalyst obtained shows great potential for practical application.展开更多
The dynamic characteristics of cooking-related particle size distributions in real-world settings are not fully understood.Through a real-world campaign in a naturally-ventilated apartment in the northwest US,this stu...The dynamic characteristics of cooking-related particle size distributions in real-world settings are not fully understood.Through a real-world campaign in a naturally-ventilated apartment in the northwest US,this study investigates the temporal profiles of size-resolved particle number concentrations(PNCs)ranging from 0.3 to 10µm from frying cooking activities.The cooking scenarios included various combinations of window ventilation,venting range hood(VRH)use,and portable air cleaner(PAC)utilization.Following a standardized pan-frying protocol throughout seven scenarios,real-time PNCs of 16-size bins were measured in the kitchen.The PNCs were empirically compared among size bins,periods,and scenarios.The most abundant size ranges of cooking-related particles were 0.3–0.579µm in number(45%–71%of the total)and 2.685–5.182µm in mass(48%–57%of the total).Compared with the scenario without any cooking-fume mitigating measures,keeping the kitchen windows open reduced the mean PNCs during and within 1-h after cooking for PM_(0.3-2.5),PM_(2.5-10),and PM_(0.3-10)by 78%,92%,and 79%,respectively.By contrast,utilizing a VRH during cooking reduced the corresponding levels by 21%,69%,and 25%,respectively.Combined with running the VRH,using a PAC in the kitchen led to additional reductions of 84%,88%,and 84%,respectively.Additionally,the removal efficiencies of the three strategies generally increased with particle sizes.展开更多
Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characterist...Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics,especially ultrafine particles(UFP < 100 nm) and accumulation mode particles(AMP 100-555 nm).Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 255℃ to investigate PM emission and decay features between 0.03 and 10 μm size dimension by electrical low pressure impactor(ELPI) without ventilation.Rapeseed and sunflower produced high PM_(2.5) around5.1 mg/m^3,in comparison with those of soybean and corn(5.87 and 4.55 mg/m^3,respectively)at peak emission time between 340 and 450 sec since heating oil,but with the same level of particle numbers 6-9 × 10~5/cm^3.Mean values of PM_(1.0)/PM_(2.5) and PM_(2.5)/PM_(10) at peak emission time are around 0.51-0.55 and 0.23-0.29.After 15 min naturally deposition,decay rates of PM_(1.0),PM_(2.5) and PM_(10) are 13.3%-29.8%,20.1%-33.9%and 41.2%-54.7%,which manifest that PM_(1.0) is quite hard to decay than larger particles,PM_(2.5) and PM_(1.0).The majority of the particle emission locates at 43 nm with the largest decay rate at 75%,and shifts to a larger size between137 and 555 nm after 15 min decay.The decay rates of the particles are sensitive to the oil type.展开更多
基金Supported by the Development Project of Community Health Nursing Innovative Practice Model of China(CMB08883)
文摘Cooking fumes (CFs) are mixtures of many toxic components, such as aldehydes, heterocyclic amines, polycyclic aromatic hydrocarbons, fat aerosols and particulate matters. CFs exposure has been proven to be associated with many diseases. Lung cancer takes the leading place among the diseases being reported caused by CFs exposure. Molecular and biochemical studies have found that CFs exposure may lead to lung cancer by gene damage, formation of reactive oxygen species, blockage of related proteins’ function, and even cell death. However, reviews about the mechanisms of how CFs exposure leads to lung cancer are still lacking. Elucidation of the mechanisms of lung cancer caused by CFs exposure may provide a new insight into the prevention of lung cancer caused by CFs exposure, as well as laying the foundation for the toxicity study of CFs. In this minor review, the mechanisms of how CFs exposure leads to lung cancer were summarized and discussed.
基金Project supported by the National Basic Research Program of China(No.G1999022407).
文摘Five monolithic catalysts with low noble metal content were prepared by irnmerge method (Pt/γ=Al2O3, Pt/La-Al2O3, Pt/YSZ-AI203, Pt+Pd/La-Al2O3 and Pd/La-Al2O3) and their activity measurements were carried out in a conventional fixed-bed flow reactor. The results show that La-Al2O3 can promote activity of the prepared catalysts and can decrease the complete conversion temperature of cooking fume. The Pt/La-Al2O3 catalyst has the highest activity and can be applied in wide range of gas hourly space velocity (GHSV). Some characterizations (XRD, TPR) were carried out with the objective to explain differences in catalytic behaviors. The prepared catalyst showed a great potential for application.
基金Project supported bythe National Basic Research Programof China (G1999022407)
文摘Four monolithic catalysts with low concentration of noble metal were prepared by the immersion method [ Pt/La- Al2O3, Pt/La-Al2O3 + Pt/OSM (2 : 1 ), Pt/La-Al2O3 + Pt/OSM ( 1 : 1 ) Pt/La-Al2O3 + Pt/OSM ( 1 : 2) ], and measurements of their activity were carded out in a conventional fixed-bed flow reactor. The results show that the oxygen storage material (OSM) that is added can promote the activity of the prepared catalysts and can decrease the complete conversion temperature of cooking fume. When the ratio between La-Al2O3 and OSM is 1 : 1, the catalyst has the highest activity, and the complete conversion temperature of cooking fume is 270℃ ; the catalyst thus prepared can be applied in a wide range of gas hourly space velocity (GHSV) [from 10000 to 60000 h^-1]. The catalyst obtained shows great potential for practical application.
基金the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22qntd4308)a special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control(No.BZ0344KF21-05)State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex(No.SCAPC202106).
文摘The dynamic characteristics of cooking-related particle size distributions in real-world settings are not fully understood.Through a real-world campaign in a naturally-ventilated apartment in the northwest US,this study investigates the temporal profiles of size-resolved particle number concentrations(PNCs)ranging from 0.3 to 10µm from frying cooking activities.The cooking scenarios included various combinations of window ventilation,venting range hood(VRH)use,and portable air cleaner(PAC)utilization.Following a standardized pan-frying protocol throughout seven scenarios,real-time PNCs of 16-size bins were measured in the kitchen.The PNCs were empirically compared among size bins,periods,and scenarios.The most abundant size ranges of cooking-related particles were 0.3–0.579µm in number(45%–71%of the total)and 2.685–5.182µm in mass(48%–57%of the total).Compared with the scenario without any cooking-fume mitigating measures,keeping the kitchen windows open reduced the mean PNCs during and within 1-h after cooking for PM_(0.3-2.5),PM_(2.5-10),and PM_(0.3-10)by 78%,92%,and 79%,respectively.By contrast,utilizing a VRH during cooking reduced the corresponding levels by 21%,69%,and 25%,respectively.Combined with running the VRH,using a PAC in the kitchen led to additional reductions of 84%,88%,and 84%,respectively.Additionally,the removal efficiencies of the three strategies generally increased with particle sizes.
基金supported by the strategic project of science and technology of Chinese Academy of Sciences(No.XDB05050000)
文摘Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics,especially ultrafine particles(UFP < 100 nm) and accumulation mode particles(AMP 100-555 nm).Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 255℃ to investigate PM emission and decay features between 0.03 and 10 μm size dimension by electrical low pressure impactor(ELPI) without ventilation.Rapeseed and sunflower produced high PM_(2.5) around5.1 mg/m^3,in comparison with those of soybean and corn(5.87 and 4.55 mg/m^3,respectively)at peak emission time between 340 and 450 sec since heating oil,but with the same level of particle numbers 6-9 × 10~5/cm^3.Mean values of PM_(1.0)/PM_(2.5) and PM_(2.5)/PM_(10) at peak emission time are around 0.51-0.55 and 0.23-0.29.After 15 min naturally deposition,decay rates of PM_(1.0),PM_(2.5) and PM_(10) are 13.3%-29.8%,20.1%-33.9%and 41.2%-54.7%,which manifest that PM_(1.0) is quite hard to decay than larger particles,PM_(2.5) and PM_(1.0).The majority of the particle emission locates at 43 nm with the largest decay rate at 75%,and shifts to a larger size between137 and 555 nm after 15 min decay.The decay rates of the particles are sensitive to the oil type.