期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Controlled Rolling and Cooling Process for Low Carbon Cold Forging Steel 被引量:4
1
作者 李壮 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期89-93,共5页
Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show th... Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show that the specimens with fast cooling after hot rolling exhibit very good mechanical properties, and the improvement of the mechanical properties can be attributed mainly to the ferrite-grain refinement. The mechanical properties increase with decreasing final cooling temperature within the range from 670 ℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony. The specimen with fast cooling after low temperature rolling shows the highest values of the mechanical properties. The effect of the ferrite grain size on the mechanical properties was greater than that of pearlite morphology in the present study. The mechanical properties of specimens by controlled rolling and cooling process without thermal treatment were greatly superior to that of the same specimens by the conventional rolling, and their tensile strength reached 490 MPa grade even in the case of low temperature rolling without controlled rolling. It might be expected to realize the substitution medium-carbon by low-carbon for 490 MPa grade cold forging steel with controlled rolling and cooling process. 展开更多
关键词 controlled rolling and cooling process low carbon cold forging steel fast cooling low temperature rolling the ferrite-grain refineme
下载PDF
Grain Growth of Deformation Induced Ferrite in V Microalloyed Low Carbon Steel During Controlled Cooling Process 被引量:1
2
作者 WANG Kai 1,WANG Li-jun 2,WANG Qiang 1,HE Ji-cheng 1,LIU Chun-ming 2 (1.Key Laboratory of Electromagnetic Processing of Materials,Ministry of Education,Northeastern University,Shenyang 110819,China 2.School of Materials and Metallurgy,Northeastern University,Shenyang 110819,China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期377-382,共6页
The effect of vanadium on the DIFT (Deformation Induced Ferrite Transformation) microstructure coarsening in low carbon steel during the continuous cooling processes and isothermal processes at different temperatures ... The effect of vanadium on the DIFT (Deformation Induced Ferrite Transformation) microstructure coarsening in low carbon steel during the continuous cooling processes and isothermal processes at different temperatures were investigated using thermo-simulator.The results showed that the steel containing a small amount of vanadium had the similar velocity of grain growth with the vanadium free steel during the continuous cooling process,but a lower velocity of grain growth than that of vanadium free steel during isothermal processes at high temperatures.On the other hand,the vanadium remarkably inhibited grain growth in the steel containing a high amount of vanadium during both the continuous cooling and isothermal processes.Vanadium dissolved in matrix is indicated as an important factor on restraining grain growth through estimating the driving force of normal grain growth and the resistance of precipitation particles of vanadium on grain growth.The influencing mechanism of vanadium dissolved in matrix on the grain growth during the controlled cooling process is discussed. 展开更多
关键词 low carbon steel vanadium microalloying DIFT grain growth controlled cooling process
原文传递
Influence of Controlled Rolling and Cooling Process on the Mechanical Properties of Low Carbon Cold Forging Steel 被引量:1
3
作者 LI Zhuang 1,WU Di 2,ZHENG Hui 1,DONG Xue-xin 2 (1.School of Materials Science and Engineering,Shenyang University of Aeronautics and Astronautics,Shenyang 110136,Liaoning,China 2.State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110004,Liaoning,China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期595-599,共5页
In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forg... In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forging steel was investigated.The results show that the faster cooling after the deformation (especially in low temperature rolling conditions) leads to the refinement of the ferrite grain.The specimen exhibits very good mechanical properties owing to the finer ferrite grains.The pearlite morphologies can also affect the mechanical properties of low carbon cold forging steel.The mechanical properties increase with decreasing final cooling temperature within the range from 650℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony.The mechanical properties of the specimens with fast cooling after the conventional rolling are not only better than those of the specimens with slow cooling after low temperature rolling,but also almost similar to those of the specimens with fast cooling after low temperature rolling.It is suggested that fast cooling after high temperature rolling (the conventional rolling) process would be of important industrial value. 展开更多
关键词 controlled rolling and cooling process low carbon cold forging steel fast cooling the finer ferrite grains mechanical properties
原文传递
Research and modeling on correlation among microstructure,yield strength and process of bainite/martensite steel 被引量:1
4
作者 Jia-jia Qiu Min Zhang +2 位作者 Gu-hui Gao Zhun-li Tan Bing-zhe Bai 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第7期834-841,共8页
The contributions of different strengthening mechanisms to yield strength of bainite/martensite multiphase rail steel with different finish cooling temperatures in the controlled cooling process were quantitatively in... The contributions of different strengthening mechanisms to yield strength of bainite/martensite multiphase rail steel with different finish cooling temperatures in the controlled cooling process were quantitatively investigated.Dislocation density and substructure size of the rail steel were measured by scanning electron microscopy,electron backscatter diffraction and X-ray diffraction.The results show that the dislocation density increases with the decrease in block width in rail steel.Based on the correlation among dislocation density,block width and yield strength,a physical model was proposed to predict the yield strength of rail steel.The variation of block width and dislocation density in different positions of rail head microstructure was integrated with temperature field simulation.Dislocation density and block width reveal significant correlations with the finish cooling temperature. 展开更多
关键词 Bainite/martensite rail steel Temperature field simulation controlled cooling process Yield strength Dislocation density
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部