This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it wa...This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it was not ejected into the main flow. This paper used different numerical conditions including different turbulence models,turbulence intensities,thermal conduction coefficients and the influence on fluid property via temperature variation. The temperature distribution and pressure distribution of the blade were compared with experimental data. The results show that the numerical results using different turbulence models are almost identical to experimental data even little deviation occurs at shock wave location. The trends of temperature distribution under different numerical conditions are coincident to experimental data,especially Reynolds stress turbulence model. It can be concluded that anisotropic turbulence models can simulate the transition from laminar to turbulence,and the influence of turbulence intensity on laminar region and transition region is more than that on developed turbulent region.展开更多
The thermal-environment characteristics of the existing forced-convection cooling system were compared with those of the convective cooling system, which combined the radiant-floor cooling system using floor-heating p...The thermal-environment characteristics of the existing forced-convection cooling system were compared with those of the convective cooling system, which combined the radiant-floor cooling system using floor-heating panel typically applied to apartments in South Korea with the forced-convection cooling system using improved fan coil unit. The subjective warm/cool-feeling responses to the combined radiant-floor and convective cooling system in the questionnaire survey conducted among the test subjects were analyzed to establish the basic data for the combined cooling system. The results show that in the thermal-equilibrium condition, the vertical air temperature difference in the model living room is larger in the forced-convection-cooling condition. Most of the subjects feel a proper warm/cool feeling on their entire body, but they feel colder on the foot and lower body in the combined-cooling condition.展开更多
The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer r...The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer rate of compact in size and reliable operation are the challenges of a thermal design engineer of electronic equipment. Then, it has been simulated the transient a three-dimensional model to study the heating phenomenon with two assumption values of heat generation. To control for the working of this equipment, cooling process was modeled by choosing one from different cooling technique. Constant low speed fan at one direction of air flow was used for cooling to predict the reducing of heating temperature through working of this equipment. Numerical Solution of finite difference time domain method (FDTD) has been utilized to simulate the temporal and spatial temperature profiles through two processes, which would minimize the solution errors.展开更多
The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the imp...The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the impact on theheat transfer. An experimental approach is performed with flow visualization via paint injection into water. Alsonumerical calculations are carried out in two sets, on the one hand water calculations accompanying the experimentsand on the other hand conjugate heat transfer calculations under realistic engine conditions. The latter calculationsare still ongoing delivering preliminary results.Five geometry configurations are investigated, three of them with differing turbulator arrangements in the leadingedge channels. The operating point of the base configuration is set to Re = 50,000 at the inlet while for the modifiedgeometries the pressure ratio is held constant compared to the base.Among several investigated configurations one could be identified that leads to a heat transfer enhancement inone leading edge channel 7 % larger compared to the base.展开更多
基金Sponsored by the National Natural Science Foundation of China( Grant No. 50576017)
文摘This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it was not ejected into the main flow. This paper used different numerical conditions including different turbulence models,turbulence intensities,thermal conduction coefficients and the influence on fluid property via temperature variation. The temperature distribution and pressure distribution of the blade were compared with experimental data. The results show that the numerical results using different turbulence models are almost identical to experimental data even little deviation occurs at shock wave location. The trends of temperature distribution under different numerical conditions are coincident to experimental data,especially Reynolds stress turbulence model. It can be concluded that anisotropic turbulence models can simulate the transition from laminar to turbulence,and the influence of turbulence intensity on laminar region and transition region is more than that on developed turbulent region.
基金Project(NRF-2013RIA2A1A01014020)supported by the National Research Foundation of Korea
文摘The thermal-environment characteristics of the existing forced-convection cooling system were compared with those of the convective cooling system, which combined the radiant-floor cooling system using floor-heating panel typically applied to apartments in South Korea with the forced-convection cooling system using improved fan coil unit. The subjective warm/cool-feeling responses to the combined radiant-floor and convective cooling system in the questionnaire survey conducted among the test subjects were analyzed to establish the basic data for the combined cooling system. The results show that in the thermal-equilibrium condition, the vertical air temperature difference in the model living room is larger in the forced-convection-cooling condition. Most of the subjects feel a proper warm/cool feeling on their entire body, but they feel colder on the foot and lower body in the combined-cooling condition.
文摘The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer rate of compact in size and reliable operation are the challenges of a thermal design engineer of electronic equipment. Then, it has been simulated the transient a three-dimensional model to study the heating phenomenon with two assumption values of heat generation. To control for the working of this equipment, cooling process was modeled by choosing one from different cooling technique. Constant low speed fan at one direction of air flow was used for cooling to predict the reducing of heating temperature through working of this equipment. Numerical Solution of finite difference time domain method (FDTD) has been utilized to simulate the temporal and spatial temperature profiles through two processes, which would minimize the solution errors.
基金supported by the AG Turbo with funds of the Federal Ministry of Eco- nomics and Technology BMWi (FKZ 0327715G)
文摘The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the impact on theheat transfer. An experimental approach is performed with flow visualization via paint injection into water. Alsonumerical calculations are carried out in two sets, on the one hand water calculations accompanying the experimentsand on the other hand conjugate heat transfer calculations under realistic engine conditions. The latter calculationsare still ongoing delivering preliminary results.Five geometry configurations are investigated, three of them with differing turbulator arrangements in the leadingedge channels. The operating point of the base configuration is set to Re = 50,000 at the inlet while for the modifiedgeometries the pressure ratio is held constant compared to the base.Among several investigated configurations one could be identified that leads to a heat transfer enhancement inone leading edge channel 7 % larger compared to the base.