期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Best Determined Position of Vents Based on Jet Cooling Model
1
作者 Na Huang Yuhan Sun Xiangjie Wu 《Journal of Mechanical Engineering Research》 2020年第1期25-29,共5页
In some data centers,cold air is required to act on the cabinet to achieve cooling requirements,and the mixing of cold air and hot air reduces the utilization efficiency of cold air.In order to solve this problem,a je... In some data centers,cold air is required to act on the cabinet to achieve cooling requirements,and the mixing of cold air and hot air reduces the utilization efficiency of cold air.In order to solve this problem,a jet cooling model is established to solve the optimal position of the outlet through the movement of cold air. 展开更多
关键词 Optimal Scheme Jet cooling model Fourier law Thermal Conductivity
下载PDF
Prediction Model for Cooling of an Electrical Unit with Time-Dependent Heat Generation
2
作者 Adil A. Alwan Rafel H. Hameed 《Journal of Mechanics Engineering and Automation》 2012年第2期124-131,共8页
The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer r... The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer rate of compact in size and reliable operation are the challenges of a thermal design engineer of electronic equipment. Then, it has been simulated the transient a three-dimensional model to study the heating phenomenon with two assumption values of heat generation. To control for the working of this equipment, cooling process was modeled by choosing one from different cooling technique. Constant low speed fan at one direction of air flow was used for cooling to predict the reducing of heating temperature through working of this equipment. Numerical Solution of finite difference time domain method (FDTD) has been utilized to simulate the temporal and spatial temperature profiles through two processes, which would minimize the solution errors. 展开更多
关键词 cooling by force convection cooling electronic equipment thermal analysis of electronic equipment numerical modeling of cooling electronic equipment.
下载PDF
Secondary cooling technology for high-efficiency continuous billet-casting
3
作者 陈登福 《Journal of Chongqing University》 CAS 2007年第4期242-248,共7页
The mathematical model of high-efficiency continuous billet casting was developed, incorporating the effective spraying water coefficient and the effective specific spraying water flowrate of secondary cooling. To rea... The mathematical model of high-efficiency continuous billet casting was developed, incorporating the effective spraying water coefficient and the effective specific spraying water flowrate of secondary cooling. To realize uniform cooling in secondary cooling zones, the spraying cooling structure and the arrangement of nozzles were redesigned and optimized, and an additional spraying cooling zone was used. A new secondary cooling model of spraying water was built. It was found that the required spraying water flowrate of a cooling zone was related with the casting speed, the casting temperature, the compositions of liquid steel and the cooling water temperature of secondary cooling. The operation of the reformed caster proved that the spraying cooling structure and the new secondary cooling model were suitable, and the casting speed was greatly enhanced. The highest casting speed was (3.8 to 4.0) m/min for billet with a section of 150× 150 mm^2. The quality And the outout of the billet were imoroved, andthe economical benefit was heightened. 展开更多
关键词 high-efficiency continuous casting water flowrate of secondary cooling secondary cooling model of sprayingwater billet quality
下载PDF
An experimental study of salt expansion in sodium saline soils under transient conditions 被引量:11
4
作者 WAN Xusheng YOU Zhemin +1 位作者 WEN Haiyan William CROSSLEY 《Journal of Arid Land》 SCIE CSCD 2017年第6期865-878,共14页
Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temp... Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temperatures is not clear. In this study, we conducted a series of cooling experiments combined with salt crystallization to study this mechanism, and employed an ionic model to calculate the supersaturation ratio of the solution. During the experiments, the strength and the process of salt expansion were examined under different cooling rates and various crystal morphologies. The relationship between temperature and supersaturation ratio under transient conditions was also considered. Results indicate that the initial supersaturation ratio of a sodium sulfate solution is closely related to environmental conditions, and that this ratio decreases with slowing the cooling rates and stabilizing the crystal forms. Higher initial supersaturation ratios lead to an increased non-steady-state zone, resulting in less salt expansion. On the other hand, chloride ion content has a distinct influence on the crystallization supersaturation ratio of the sodium sulfate solution, and higher chloride ion content can inhibit salt expansion in sodium saline soils. These findings help explain salt expansion mechanisms in complex conditions such as seasonally frozen soils, and thus help search for improved methods of preventing salt expansion in sulfate saline soils. 展开更多
关键词 sulfate saline soil supersaturation ratio ionic model cooling rate salt expansion
下载PDF
Ground experimental investigations into an ejected spray cooling system for space closed-loop application 被引量:4
5
作者 Zhang Hongsheng Li Yunze +2 位作者 Wang Shengnan Liu Yang Zhong Mingliang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期630-638,共9页
Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor liquid mixture from the heat sur- face and the closed-loop circulat... Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor liquid mixture from the heat sur- face and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space enviromnents. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and exper- imental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 ℃ and 78.2 ℃ under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11,22 L:h to 15.76 L·h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed; results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future. 展开更多
关键词 Ejected spray cooling systemEvaluation models Ground experiment Heat transfer performance High heat flux Space closed-loop
原文传递
A Dual-driven Intelligent Combination Control of Heat Pipe Space Cooling System 被引量:4
6
作者 LI Yunze LI Mingmin LEE Kok Meng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第4期566-574,共9页
Effective thermal control systems are essential for reliable operation of spacecraft.A dual-driven intelligent combination control strategy is proposed to improve the temperate control and heat flux tracking effects.B... Effective thermal control systems are essential for reliable operation of spacecraft.A dual-driven intelligent combination control strategy is proposed to improve the temperate control and heat flux tracking effects.Both temperature regulation and heat flux tracking errors are employed to generate the final control action;their contributions are adaptively adjusted by a fuzzy fusing policy of control actions.To evaluate the control effects,describe a four-nodal mathematical model for analyzing the dynamic characteristics of the controlled heat pipe space cooling system(HP-SCS) consisting of an aluminum-ammonia heat pipe and a variable-emittance micro-electromechanical-system(MEMS) radiator.This dynamical model calculates the mass flow-rate and condensing pressure of the heat pipe working fluid directly from the systemic nodal temperatures,therefore,it is more suitable for control engineering applications.The closed-loop transient performances of four different control schemes have been numerically investigated.The results conclude that the proposed intelligent combination control scheme not only improves the thermal control effects but also benefits the safe operation of HP-SCS. 展开更多
关键词 heat pipe space cooling system dynamic modeling intelligent combination control micro-electromechanical-system
原文传递
Existence of Solution to Transpiration Cooling Control Problem 被引量:1
7
作者 HAN Shizhong(Kaifeng Education College, Kaifeng, 475004)BU Chunxia ZHAO Yu(Institute of System Science, Academia Sinica, Beijing, 100080) 《Systems Science and Systems Engineering》 CSCD 1996年第2期250-256,共7页
This paper introduces non-local equilibrium model of the transpiratin cooling control with moving boundary. We regard the velocity of the coolant as the controlled of system, and prove that the solutio to the transpir... This paper introduces non-local equilibrium model of the transpiratin cooling control with moving boundary. We regard the velocity of the coolant as the controlled of system, and prove that the solutio to the transpiration coolig control problem exists uniquely under the fair assumption with non-ablation. Moreover, continuous dependence of solution on the controller is presented. 展开更多
关键词 Non-local equilibrium model transpiration cooling control evolutin system.
原文传递
Development of an aero-thermal coupled through-flow method for cooled turbines 被引量:3
8
作者 GU ChunWei LI HaiBo SONG Yin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第12期2060-2071,共12页
The influence of complicated interaction between the flow field and heat transfer in cooled turbines becomes more and more significant with the increasing turbine inlet temperature. However, classical through-flow met... The influence of complicated interaction between the flow field and heat transfer in cooled turbines becomes more and more significant with the increasing turbine inlet temperature. However, classical through-flow methods did not take into account the influence of the interaction caused by air cooling. The aerodynamic design and cooling design of cooled turbines were carried out separately, and the iterations between the aerodynamic design and cooling design led to a long design period and raised the design cost. To shorten the design period and decrease the design cost, this paper proposes a concise aero-thermal coupled through-flow method for the design of cooled turbines, taking into account the influence of the complicated interaction between the flow field and heat transfer in cooled turbines. The governing equations, such as energy equation and continuity equation in classical through-flow method are re-derived theoretically by considering the historical influence of cooling with the same method that deals with viscous losses in this paper. A cooling model is developed in this method. The cooled blade is split into a number of heat transfer elements, and the heat transfer is studied element by element along both the span and the chord in detail. This paper applies the method in the design of a two-stage axial turbine, of which the first stator is cooled with convective cooling. With the prescribed blade temperature limitation and the knowledge of the flow variables of the mainstream at the turbine inlet, such as the total pressure, total temperature and mass flow rate, the convergence of the calculation is then obtained and the properties of the flow field, velocity triangles and coolant requirement are well predicted. The calculated results prove that the aero-thermal coupled through-flow method is a reliable tool for flow analysis and coolant requirement prediction in the design of cooled turbines. 展开更多
关键词 aero-thermal coupled through-flow method cooling model cooled turbines
原文传递
Singularity of lithosphere mass density over the mid-ocean ridges and implication on floor depth and heat flow 被引量:1
9
作者 Qiuming Cheng 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第5期55-71,共17页
The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).Howe... The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).However,one of the long-standing problems of these classical models is the discrepancies between predicted and observed heat flow and floor depth for very young and very old lithosphere.There have been several recent attempts to overcome this problem:one model incorporates temperature-and pressure-dependent parameters and the second model includes an additional low-conductivity crustal layer or magma rich mantle layer(MRM).Alternatively,in the current paper,the ordinary density of lithosphere in the plate conductive models is substituted with a reduction of lithosphere density towards axis that features the irregularity and nonlinearity of plates across the mid-ocean ridges.A new model is formulated incorporating the new form of density for predicting both peak heat flow and floor depth.Simple solutions of power-law forms derived from the model can significantly improve the predicting results of heat flow and floor depth over the mid-ocean ridges.Several datasets in the literature were reutilized for model validation and comparison.These datasets include both earlier datasets used for original model calibration and the more recently compiled high-quality datasets with both sedimentary and crustal loading corrections.The results indicate that both the heat flow and the slope(first orderderivative)of sea floor approach infinity(undifferentiability or singularities)around the mid-ocean ridges.These singularities are partially due to the boundary condition as it has been already known in the literature and partially to the reduction of density of lithosphere as discovered for the first time in the current research. 展开更多
关键词 Mid-ocean ridges Plate cooling model Lithosphere density Conductive model HEAT-FLOW Floor depth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部