期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Types, Metallogenic Environments and Characteristics of Temporal and Spatial Distribution of Copper Deposits in China 被引量:6
1
作者 Wang Zhitian and Qin Kezhang Beijing Institute of Geology for Mineral Resources, CNNC, Beijing Zhang Zhongmin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1989年第1期79-92,共14页
Based upon a comprehensive study of 123 copper deposits in China. this paper reaches the following conclusions: 1. The crust in China was solidified pretty late; with the accretion of the plate, the copper mineralizat... Based upon a comprehensive study of 123 copper deposits in China. this paper reaches the following conclusions: 1. The crust in China was solidified pretty late; with the accretion of the plate, the copper mineralization moved towards its margin in space and became successively younger in age. 2. The major copper ore types ever found in the world have mostly been discovered in China, in which the porphyry type seems to be the most important and the massive sulfide type in the transitional bed between marine clastic and carbonate rocks is clearly defined. 3. Carbonate strata are widespread in China and their deposition lasted for a long geological period, so the proportion of copper deposits occurring in them is large as compared with other parts of the world. 4. Seven metallogenic epochs can be recognized, in which the Mesozoic one plays the leading role and the middle(late) Palaeozoic and Cenozoic ones are next in importance. Mineralization was comparatively simple in the early geological period. and became diversified later on. In the early epochs copper deposits related to basaltic magmatism and metamorphosed marine sediments predominated, whereas in the later epochs those related to granitic magmatism and continental sedimentation were dominant. 5. There exist in China thirteen metallogenic provinces, of which the Lower Yangtze downwarping belt, Sanjiang fold system, Jiangnan axis and Xikang-Yunnan axis are of greater significance. 6. The crustal mobility in China was rather pronounced, the polycyclic evolution of the crust has resulted in such obvious phenomena as the inheritance of mineralization, the coexistence of various types and the superposition of different genetic types. 展开更多
关键词 Metallogenic Environments and Characteristics of Temporal and Spatial Distribution of copper deposits in China TYPES
下载PDF
The Features of Sedimentary Facies and Copper Enrichment Metallogenic Regularities of Kuzigongsu Group in Sareke Glutenite Type Copper Deposits,Wuqia,Xinjiang 被引量:4
2
作者 WANG Lei FANG Weixuan +3 位作者 JIA Runxing LU Jia YE Lei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期195-196,共2页
1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.C... 1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.Conglomerate of 展开更多
关键词 The Features of Sedimentary Facies and copper Enrichment Metallogenic Regularities of Kuzigongsu Group in Sareke Glutenite Type copper deposits Wuqia XINJIANG
下载PDF
A GIS Approach to Prediction of Copper Deposits
3
作者 Wu Xinlin Guangzhou Marine Geological Survey, Guangzhou 510760 Chi Shundu Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 2000年第2期88-90,共3页
This paper describes three main parts of GIS technique used in prospecting of copper deposits. Firstly, this paper briefly introduces GIS technique for data preparation. Then it discusses the geo anomaly (GA) analys... This paper describes three main parts of GIS technique used in prospecting of copper deposits. Firstly, this paper briefly introduces GIS technique for data preparation. Then it discusses the geo anomaly (GA) analysis and targets delineation methods, where the unit ore equivalent calculation of planar GA and the transformation and evaluation of linear GA are dominant. In addition, the method for copper prospecting is demonstrated. Finally a case study of copper deposit prospecting in Yuanjiang, Yunnan Province is presented by the use of MAPGIS. 展开更多
关键词 GIS GA copper deposits prognosis target area.
下载PDF
ORE-CONTROLLING FACTORS AND PROSPECTS OF GEODEPRESSION (DIWA) BASIN SANDSTONE TYPE COPPER DEPOSITS IN CHINA
4
《Geotectonica et Metallogenia》 1994年第Z2期48-49,共2页
关键词 ORE-CONTROLLING FACTORS AND PROSPECTS OF GEODEPRESSION BASIN SANDSTONE TYPE copper deposits IN CHINA DIWA
下载PDF
Interactions of Copper, Evaporite, and Organic Matter and Genesis of Sandstone-Hosted Copper Deposits in the Chuxiong Basin, Yunnan Province 被引量:5
5
作者 Zhuang Hanping, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, GuizhouRan Chongying, He Mingqin, Geology Department, Kunming Institute of Technology, Kunming, Yunnanand Lu Jialan Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangdong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1996年第4期407-419,共13页
Studies on organic geochemistry indicate that the origin, type and maturity of organic matter are different among coal-bearing, copper-bearing and evaporite formations in the Mesozoic continental Chuxiong Basin, Yunna... Studies on organic geochemistry indicate that the origin, type and maturity of organic matter are different among coal-bearing, copper-bearing and evaporite formations in the Mesozoic continental Chuxiong Basin, Yunnan, China. A mechanism has been proposed that (1) during the diagenetic mineralization stage the short-chain organic acids dervied from kerogen played an important role in remobilizing copper from source beds, while oils acted as important carrier of copper, and that (2) during the transformation or remolding mineralization stage, meteoric water leached the evaporite layers and formed downward-percolating oxidizing SO42-rich fluids; meanwhile, the copper-bearing fluids migrating upwards along growth faults from the basement was contaminated by the coal-bearing series on the way and formed reducing organic-rich fluids; oxidation-reduction occurred and sulfides formed when the two kinds of fluids met within sandstones. 展开更多
关键词 sandstone-hosted copper deposit organic matter EVAPORITE organic geochemistry Chuxiong basin
下载PDF
Mineralization of the Liwu large-scale stratiform copper deposits in Sichuan Province, China: Constraints from fluid inclusions
6
作者 Hua-yun Yuan Qing Zhou +6 位作者 Yuan-bao Song Wei Zhang Hui-hua Zhang Tong-zhu Li Tao Yin Chang-nan Wang Gao-lin Tang 《China Geology》 CAS CSCD 2023年第2期252-268,共17页
The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristi... The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit. 展开更多
关键词 Stratiform copper deposit MINERALIZATION Fluid inclusion H-O isotopes Hydrothermal deposit Dome structure Middle Proterozoic metamorphic rock Mineral exploration engineering Sichuan Province
下载PDF
Geochronology,petrogenesis,and geological significance of the quartz vein-type copper deposits in Longwei area,north-west Dayaoshan,Guangxi
7
作者 Song FU Shehong LI +4 位作者 Changxing LV Longqing SHI Xuhan HU Jinming WU Zhuolin XIE 《Frontiers of Earth Science》 SCIE CSCD 2024年第1期68-82,共15页
Quartz-vein-type copper deposits were discovered in SN-trend ore-bearing structures in north-west Dayaoshan,Guangxi.Lack of reports on the precise metallogenic age of these deposit has become a bottleneck in metalloge... Quartz-vein-type copper deposits were discovered in SN-trend ore-bearing structures in north-west Dayaoshan,Guangxi.Lack of reports on the precise metallogenic age of these deposit has become a bottleneck in metallogenic research in this area.In this study,the quartz vein-type copper mine in Longwei area of Jinxiu was selected as the research object.Fresh illite samples in the fault gouges and ore samples were collected for testing and analysis.Based on the Re-Os isotope dating study,the age of pyrite isochron,belonging to the Caledonian period,was determined to be 417±25 Ma,whereas that of chalcopyrite isochron belonging to the Indosinian period,was found to be 243±18 Ma.Pyrite crystallized considerably earlier than chalcopyrite.The obtained EPMA data were combined with rock mineralogical analysis data,Metasomatous mineral pyrite and metasomatic mineral chalcopyrite were identified to have originated from different hydrothermal systems.In the Indosinian period,copper deposits in the Longwei area underwent pyrite crystallization,pyrite fragmentation,copper-bearing hydrothermal filling,and metasomatism,consolidating and forming minerals.The study determined the mineralisation time and ore sources of copper deposits in the Longwei area.The study provides evidence for the existence of Indosinian hydrothermal activities in the north-western Dayaoshan area. 展开更多
关键词 Re-Os dating electron probe micro-analyser quartz-vein copper deposit Dayaoshan area
原文传递
Geological and Geochemical Characteristics and Genesis of the Shaxi Porphyry Copper (Gold) Deposits, Anhui Province 被引量:5
8
作者 XU Zhaowen QIU Jiansheng +3 位作者 REN Qijiang XU Wenyi NIU Cuiyi FU Bin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第1期8-18,共11页
The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± ... The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± 1.6 Ma. Geochemically, the rock is rich in alkalis (especially sodium), light rare earth elements (LREE) and large-ion lithophile elements (LILE), and has a relatively low initial strontium isotopic ratio (Isr=0.7058); thus it is the product of differentiation of crust-mantle mixing source magma. The model of alteration and mineralization zoning is similar to the Hollister (1974) diorite model. The ore fluids have a relatively high salinity and contain significant amounts of CO2, Ca2+, Na+ and ***CI?. The homogenization temperatures of fluid inclusions for the main mineralization stage range from 280 to 420°C, the δ18O values of the ore fluids vary from 3.51 to 5.52 %, the δD values are in the range between ?82.4 and ?59.8 %, the δ34S values of sulphides vary from ?0.3 to 2.49 %, and the δ13C values of CO2 in inclusions range between ?2.66 and ?6.53 %. Isotope data indicate that the hydrothermal ore fluids and ore substances of the Shaxi porphyry copper (gold) deposits were mainly derived from magmatic systems. 展开更多
关键词 geological and geochemical characteristics genesis of the deposit porphyry copper (gold) deposit Shaxi ANHUI
下载PDF
Geochemistry of Subvolcanic-Type Copper-Silver Deposits in Eastern China 被引量:2
9
作者 GENG Wenhui YAO Jinyan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期511-515,共5页
The metallogenesis of subvolcanic deposits is controlled by subvolcanic activities. The copper polymetallic deposits are genetically related to intermediate-acid rocks, and the silver polymetallic deposits are more cl... The metallogenesis of subvolcanic deposits is controlled by subvolcanic activities. The copper polymetallic deposits are genetically related to intermediate-acid rocks, and the silver polymetallic deposits are more closely related to acid rocks. The abundance of Cu is relatively high in the intermediate-acid rocks and subvolcanic rocks, whereas the abundances of Pb, An and Ag are high in acid rocks, indicating rich ore-forming elements in original magmas. The study of REEs shows that the magmatic type related to copper deposits is the syntectic type, and that related to silver polymetallic deposits is mainly the re-melting type. The deposits were formed under medium-low temperatures and low salinity. The metallogenic times were the late stage of the early Yanshanian or the late Yanshanian, dating 78–147 Ma. 展开更多
关键词 subvolcanic rocks copper silver deposits GEOCHEMISTRY eastern China
下载PDF
Enrichment of Platinum-group Elements(PGE) and Re-Os Isotopic Tracing for Porphyry Copper(Gold) Deposits 被引量:2
10
作者 HE Xiaohu ZHONG Hong +2 位作者 ZHU Weiguang BAI Zhongjie HU Wenjun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第4期1288-1309,共22页
Platinum-group elements (PGE) in PGE-rich porphyry copper (gold) deposits are mainly Pt and Pd, whereas the concentrations of other PGE (Ru, Rh, Os, Ir) are significantly low. Moreover, Pt and Pd mainly exist in... Platinum-group elements (PGE) in PGE-rich porphyry copper (gold) deposits are mainly Pt and Pd, whereas the concentrations of other PGE (Ru, Rh, Os, Ir) are significantly low. Moreover, Pt and Pd mainly exist in sulfides in the forms of crystal lattice or tiny platinum-group mineral (PGM) inclusions. The present data show that there is a positive relationship between Pt and Pd concentrations and Cu (Au) in porphyry copper (gold) deposits. The comparison of chondrite-normalized PGE distribution patterns between the ore-bearing porphyry intrusions and ore-barren porphyry intrusions in arc setting, 187^Os/188^Os, 87^Sr/86^Sr and S isotopes for porphyry copper (gold) deposits shows that PGEs were mainly derived from the mantle, and fluids from subduction zones devoted trivial PGE to the magma. The porphyry copper (gold) deposits associated with subducted events are most probably enriched in PGE, whereas those related to crustal thickening, lithospheric delamination or underplating rarely concentrate PGE. The osmium isotopic compositions in porphyry copper (gold) deposits reveal that (187^Os/188^Os)i values are highly variable and not lower than those of primitive upper mantle (PUM) and mantle peridotite, however, osmium concentrations are commonly lower than mantle peridotite, suggesting that parental magmas of some porphyry intrusions had experienced crustal contamination during magma evolution. Experimental investigations have proved that PGE exist in the forms of Cl^- and HS^- complexes during transportation and migration of the oreforming fluids. This paper summarizes previous studies including crucial controlling factors and mechanisms for PGE enrichment, and points out that the mantle-derived magmas parental to porphyry intrusions are the prerequisite for PGE enrichment in porphyry copper (gold) deposits. Favorable physical and chemical conditions (including salinity, temperature, pressure, pH, and oxygen fugacity) in hydrothermal fluids crucially control the PGE enrichment, and sulfur concentrations of melts play important roles in this process as well. 展开更多
关键词 PGE Re-Os isotope forms of migration enrichment process porphyry copper (gold)deposits.
下载PDF
Metallogeny of Shoshonite-Hosted Copper-Gold Deposits in Middle-South Parts of Tancheng-Lujiang Deep Fault Zone and Its Vicinity, Eastern China 被引量:1
11
作者 Qiu Jiansheng Wang Dezi Ren Qijiang Department of Earth Sciences, Nanjing University, Nanjing 210093 Brent I. A. McInnes CSIRO Division of Exploration and Mining, PO Box 136, North Ryde, NSW 2113, Australia 《Journal of Earth Science》 SCIE CAS CSCD 1999年第1期51-54,共4页
The middle south parts of Tancheng Lujiang deep fault zone and its vicinity are an important locality of Cu Au deposits related to Mesozoic volcanic subvolcanic magmatism in eastern China. According to their metal... The middle south parts of Tancheng Lujiang deep fault zone and its vicinity are an important locality of Cu Au deposits related to Mesozoic volcanic subvolcanic magmatism in eastern China. According to their metallogenic features and ore forming conditions, copper gold deposits in this district are ascribed to two groups: the epithermal group which can be further divided into tellurium gold type, quartz adularia type and quartz manganoansiderite type; the magmatic hydrothermal group which includes porphyry Cu Au deposit, breccia pipe porphyry type Au Cu deposit and skarn type Au Cu deposit. In this paper, characteristics of six typical shoshonite hosted Cu Au deposits are outlined. Additionally, the factors that control the metallogenesis and distribution of these Cu Au deposits are discussed preliminarily. 展开更多
关键词 shoshonitic volcanic rocks copper gold deposits metallogenic features eastern China.
下载PDF
The Mechanism of Structural Control of Ore Formation and Geochemical Characteristics in the Massive Sulfide Deposits of the Wushan Copper Ore Field,Jiangxi 被引量:1
12
作者 Liu Xun Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing Zhang Zhongmin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1990年第3期261-274,共14页
The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural... The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center. 展开更多
关键词 The Mechanism of Structural Control of Ore Formation and Geochemical Characteristics in the Massive Sulfide deposits of the Wushan copper Ore Field JIANGXI
下载PDF
Geological Characteristics and Its Metallogenesis of Daolundaba Copper Polymetallic Deposits,Inner Mongolia
13
作者 PAN Xiao-fei1,HOU Zeng-qian1,WANG Shuo2,TONG Ying1,XUE Huai-min1,ZHOU Xi-wen1,XIE Yu-ling3(1.Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China 2.Inner Mongolia Geological Prospecting Limited Company,010020,China 3.University of Science and Tectonlogy Beijing,Beijing 100029,China) 《矿物学报》 CAS CSCD 北大核心 2011年第S1期86-87,共2页
1 Geology Daolundaba copper polymetallic deposit occurs in West Ujimqin Banner,the Xilin Gol League of Inner Mongolia,along the west side of South part of Daxinganling ore belt,whose tectonic position just lies at the... 1 Geology Daolundaba copper polymetallic deposit occurs in West Ujimqin Banner,the Xilin Gol League of Inner Mongolia,along the west side of South part of Daxinganling ore belt,whose tectonic position just lies at the junction of Siberian Block in the south part,North China Block in the north and Songliao block in the east.The Daolundaba copper polymetallic deposit is hosted by the Lower Proterozoic Baoyintu group of biotite-plagioclase gneiss(Pt1by),upper Permian Linxi formation of sandy slate(P2l),and the Hercynian Qianjinchang pluton of biotite granite. 展开更多
关键词 In Geological Characteristics and Its Metallogenesis of Daolundaba copper Polymetallic deposits Inner Mongolia PB
下载PDF
3D electrical structure of porphyry copper deposit:A case study of Shaxi copper deposit 被引量:3
14
作者 陈向斌 吕庆田 严加永 《Applied Geophysics》 SCIE CSCD 2012年第3期270-278,360,共10页
Located in Lu-Zong ore concentration area, middle-lower Yangtze metallogenic belt, ShaXi porphyry copper deposit is a typical hydrothermal deposit. To investigate the distribution of deep ore bodies and spatial charac... Located in Lu-Zong ore concentration area, middle-lower Yangtze metallogenic belt, ShaXi porphyry copper deposit is a typical hydrothermal deposit. To investigate the distribution of deep ore bodies and spatial characteristics of host structures, an AMT survey was conducted in mining area. Eighteen pseudo-2D resistivity sections were constructed through careful processing and inversion. These sections clearly show resistivity difference between the Silurian sandstones formation and quartz diorite porphyry and this porphyry copper formation was controlled by the highly resistive anticlines. Using 3D block Kxiging interpolation method and 3D visualization techniques, we constructed a detailed 3D resistivity model of quartz diorite porphyry which shows the shape and spatial distribution of deep ore bodies. This case study can serve as a good example for future ore prospecting in and around this mining area. 展开更多
关键词 AMT 3D resistivity characteristics porphyry copper deposit Kriging interpolation 3D visualization
下载PDF
Discrimination of Different Erosion Levels of Porphyry Cu Deposits using ASTER Image Processing in Eastern Iran:a Case Study in the Maherabad,Shadan,and Chah Shaljami Areas 被引量:1
15
作者 Mohammad Hassan KARIMPOUR Nazi MAZHARI Azadeh Malekzadeh SHAFAROUDI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第4期1195-1213,共19页
The Lut block, eastern Iran, is one of the most extensive Cenozoic magmatic rocks, that show suitable targets for porphyry Cu-Au and high-sulfidation epithermal Au related to porphyry Cu-Au mineralization. In this stu... The Lut block, eastern Iran, is one of the most extensive Cenozoic magmatic rocks, that show suitable targets for porphyry Cu-Au and high-sulfidation epithermal Au related to porphyry Cu-Au mineralization. In this study, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to identify different erosion levels of three porphyry Cu deposits, including Maherabad, Shadan, and Chah Shaljami, located in the Lut block volcanic-plutonic belt. Alteration minerals, including kaolinite, dickite, alunite, jarosite, epidote, chlorite, montmorillonite, muscovite, biotite, orthoclase, gypsum, and quartz, are selected to map different alteration zones and erosion levels. Distributions of end-members are mapped by using the SAM and MTMF in VNIR and SWIR of ASTER bands and the results are evaluated against the field studies. For some end-members, the results of SAM processing are more reliable compared to the MTMF because the latter looses field spectra. The use of angle threshold in the SAM, and MF-score and infeasibility value in the MTMF or low abundance of some end-members, and finally comparison of output images of spectral processing show good correlation with alteration maps. Differentiation and explanation of various erosion levels of porphyry Cu deposits are done successfully by using the ASTER sensor data. 展开更多
关键词 ASTER SAM MTMF Porphyry copper deposits Lut block
下载PDF
Daughter minerals in fluid inclusions of garnet and diopside from Tongguanshan Copper Deposit by SEM/EDS and LRM 被引量:2
16
作者 YulingXie JiuhuaXu +4 位作者 ZengqianHou ZhusenYang WenyiXu YifengMeng BaohuaWang 《Journal of University of Science and Technology Beijing》 CSCD 2004年第6期481-485,共5页
Tongguanshan copper deposit of Tongling large ore belt is one of the typicalskarn copper deposits. Based on careful observation under microscope many daughter mineralsincluding transparent ones and opaque ones have be... Tongguanshan copper deposit of Tongling large ore belt is one of the typicalskarn copper deposits. Based on careful observation under microscope many daughter mineralsincluding transparent ones and opaque ones have been distinguished in the fluid inclusions of garnetand diopside. The results of SEM/EDS (scanning electron microscope/energy dispersive spectrometer)and LRM (laser Raman microprobe) analysis show that these daughter minerals in garnet are sylvite,halite, sphalerite, chalcopyrite and carbonate. Sylvite daughter mineral is very popular in garnetand diopside. The existence of so much sylvite daughter mineral and other daughter minerals in thefluid inclusions indicates that the ore--forming fluid is of supper-high salinity and high potassiumconcentration. High potassium concentration in the fluid inclusions agrees with K-richmesotype--acid rock and K-silicate alteration that occurred widely in this area. The daughtermineral assemblage in garnet and diopside is similar to the mineral assemblage of ore-forming stagethat followed skarn stage. 展开更多
关键词 Tongguanshan copper deposits SKARN fluid inclusion daughter mineral potassium-rich fluid
下载PDF
Rock-forming mechanism of Qingshanjiao intrusion in Dongguashan copper(gold) deposit, Tongling area, Anhui province, China
17
作者 刘忠法 邵拥军 +1 位作者 隗含涛 汪程 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2449-2461,共13页
Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magm... Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magma origin, rock-forming dynamic background and rock-forming process were studied, and the rock-forming mechanism of Qingshanjiao intrusion was discussed, based on geological characteristics, detailed observation of petrography and systematic investigation of petrochemistry, trace elements and REE geochemistry characteristics of Qingshanjiao intrusion. The results show that Qingshanjiao rock body belongs to high-K calc-alkaline series with higher LREE elements, Th, Rb and Sr abundance, but depleted in HREE elements, Ba, Nb and Ta. The primary magma originated from the mantle-crust mixtures which were caused by basaltic magma of mantle mixing with syenite magma of partial melting of the lower crust, and the formation environment of Qingshanjiao intrusion was emplaced in the transitional environment from compression to extension. The Harker diagram and hybrid structures of plagioclase and potassium feldspar indicate that the fractional crystallization occurred in the process of magmatic evolution. The petrochemistry, trace elements and REE geochemistry characteristics indicate that the magma was contaminated by crustal material during the rock-forming. These results suggested that the Qingshanjiao intrusion was formed by fractional crystallization and assimilation and hybridization of mantle-crust magma in the transitional environment from compression to extensional. 展开更多
关键词 Qingshanjiao intrusion geological and geochemical characteristics rock-forming and geodynamic setting magma derivation rock-forming Dongguashan copper(gold) deposit
下载PDF
Chronology and Crust-Mantle Mixing of Ore-forming Porphyry of the Bangongco: Evidence from Zircon U-Pb Age and Hf Isotopes of the Naruo Porphyry Copper-Gold Deposit 被引量:14
18
作者 ZHOU Xiong FEI Guangchun +3 位作者 ZHOU Yu WEN Chunqi ZHANG Yi YUE Xiangyuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第1期217-228,共12页
The Naruo porphyry copper-gold deposit (hereinafter referred to as the Naruo deposit) in Tibet is a potentially ultra-large, typical gold-rich porphyry copper deposit, which was recently discovered in the Bangongco-... The Naruo porphyry copper-gold deposit (hereinafter referred to as the Naruo deposit) in Tibet is a potentially ultra-large, typical gold-rich porphyry copper deposit, which was recently discovered in the Bangongco-Nujiang metallogenic belt. This study analyzed U-Ph chronology and Hf isotopes of the ore-bearing granodiorite porphyry in the Naruo deposit using the LA-ICPMS dating technique. The results show that the weighted average age is 124.03±0.94Ma (MSWD=1.7, n=20), and 2±6pb/23SU isocbron age is 126.2±2.7 Ma (MSWD=1.02, n=20), both of which are within the error. The weighted average age represents the crystallization age of the granodiorite porphyry, which indicates that the ore-bearing porphyry in the Naruo deposit area was formed in the Early Cretaceous and further implies that the Neo-tethys Ocean had not been closed before 124 Ma under a typical island-arc subduction environment. The εGr(t) of zircons from the granodiorite porphyry varies from 2.14 to 9.07, with an average of 5.18, and all zircons have εRf(t) values greater than 0; 176Hf/177Hf ratio is relatively high (0.282725-0.282986). Combined with the zircon age--Hf isotope correlation diagram, the aforementioned data indicate that the source reservoir might be a region that is mixed with depleted mantle and ancient crust, which possibly contains more materials sourced from depleted mantle. Rock-forming ages and ore-forming ages of the Duolong ore concentrate area are 120-124 Ma and 118-119 Ma, respectively, which indicate 124-118 Ma represents the main rockforming and ore-forming stage within the area. The Naruo deposit is located in the north of the Bangongco-Nujiang suture, and it yielded a zircon LA-ICPMS age of 124.03 Ma. This indicates the Bangongco-Nujiang oceanic basin subducted towards the north at about 124 Ma, and the Neo-tethys Ocean had not been closed before the middle Early Cretaceous. It is possible that the crust-mantle mixing formed the series of large and giant porphyry copper-gold deposits in the Bangongco. 展开更多
关键词 gold-rich porphyry copper deposit ore-bearing porphyry zircon LA-ICPMS dating Hfisotope Bangongco-Nujiang suture Naruo Tibet
下载PDF
Metallogenetic Mechanism and Timing of Late Superimposing Fluid Mineralization in the Dongguashan Diplogenetic Stratified Copper Deposit,Anhui Province 被引量:21
19
作者 XUZhaowen LUXiancai +5 位作者 LINGHongfei LUJianjun JIANGShoyong NIEGuiping HUANGShunsheng HUAMing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第3期405-413,共9页
An important diplogenetic mineralization event superimposed on pre-existing exhalation sediments in the Tongling area, Anhui province, was triggered by widespread granitic magmatism along the northeastern margin of th... An important diplogenetic mineralization event superimposed on pre-existing exhalation sediments in the Tongling area, Anhui province, was triggered by widespread granitic magmatism along the northeastern margin of the Yangtze Block during 140–135 Ma under extensional tectonic circumstances following the collision between the North China and Yangtze blocks. The main orebodies of the Dongguashan copper deposit, a typical diplogenetic stratified deposit among many polymetallic ore deposits in China, are hosted by strata between Upper Devonian sandstone and Carboniferous limestone, and its mineralization was genetically related to the Qingshanjiao intrusive. The Rb-Sr isotopic isochron of the Qingshanjiao intrusive yields an age of about 136.5±1.4 Ma. The ore-forming fluid reflected by the inclusion fluid in quartz veins is characterized by high temperature and high salinity, and its age was also determined by Rb -Sr isotope dating as 134±11 Ma. Oxygen and hydrogen isotope composition data suggest that the ore-forming fluid was derived mainly from magmatism. By integrating these isotopic dating data, characteristics of fluid inclusions and the geology of the deposit, the mineralization of the Dongguashan copper deposit is divided into two stages. First, a stratiform sedimentary deposit or protore layer formed in the Late Devonian to the Early Carboniferous, while in the second stage the pre-existing protore was superimposed by hydrothermal fluid that was derived from the Yanshanian magmatic activities occurring around 135 Ma ago. This two-stage mineralization formed the Dongguashan statiform copper deposit. Associated “porphyry” mineralization found in the bottom of and in surrounding intrusive rocks of the orebodies might have occurred in the same period as a second-stage mineralization of this deposit. 展开更多
关键词 stratified copper deposit hydrothermal diplogenetic mineralization fluid inclusion metallogenetic epoch
下载PDF
Geological Characteristics and Ore-forming Time of the Dexing Porphyry Copper Ore Mine in Jiangxi Province 被引量:27
20
作者 GUO Shuo ZHAO Yuany +6 位作者 QU Huanchun WU Dexin XU Hong LI Chao LIU Yan ZHU Xiaoyun WANG Zengke 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期691-699,共9页
The Dexing porphyry copper ore mine is located in the Qin-Hang metallogenic belt between the Yangtze block and the Cathaysia block. It is a giant porphyry copper mine in China, including 3 ore districts: Tongchang, F... The Dexing porphyry copper ore mine is located in the Qin-Hang metallogenic belt between the Yangtze block and the Cathaysia block. It is a giant porphyry copper mine in China, including 3 ore districts: Tongchang, Fujiawu and Zhushahong. Our analyses of Re in molybdenite indicate that the ore-forming material of the copper ore deposits in Dexing should be mainly mantle-derived. Our study fills in a gap in the study of formation time of the Dexing copper mine, and further proves that the copper ore deposits in the three ore districts should be formed simultaneously, about 170 Ma, belonging to the early Yanshan period, and that the formation time of the copper ore deposits should be consistent with the formation time of granodiorite porphyry in which the copper ore deposits are hosted. Promising areas for seeking porphyry copper ore deposits is predicated to be the west or southwest of Dexing. 展开更多
关键词 Re-Os isotopic dating MOLYBDENITE porphyry copper deposit
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部