The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely rela...The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely related to the solid-liquid interface profile, which is influenced by the distance between the cooling water location and the solidification front. The mechanical properties of the thin walled copper tube prepared by the DCUS method are near those of the normal cast copper, and it has good relative density, electrical conductivity, and elongation, which are not greatly affected by casting speed. The thin walled copper tube prepared by the DCUS method also has good processing properties that can be taken to further drawing procedures directly without an intermediate process, and obtains good mechanical properties with the total processing rate of 89.8%.展开更多
The TP2 copper tube was prepared with La microalloying by horizontal continuous casting(HCC). The absorptivity of La and its effects on microstructure, tensile and corrosion properties of HCC TP2 copper tube were stud...The TP2 copper tube was prepared with La microalloying by horizontal continuous casting(HCC). The absorptivity of La and its effects on microstructure, tensile and corrosion properties of HCC TP2 copper tube were studied by means of the inductively coupled plasma optical emission spectrometer(ICP-OES), optical microscope(OM), scanning electron microscope(SEM) and potentiodynamic polarization measurements. The results show that the absorptivity of La in the HCC TP2 copper tube is about 15% under antivacuum conditions due to the good chemical activities of La. The impurity elements in copper tube such as O, S, Pb and Si can be significantly reduced, and the average columnar dendrite spacing of the copper tube can also be reduced from 2.21 mm to 0.93 mm by adding La. The ultimate tensile strength and the elongation with and without La addition are almost unchanged. However, the annual corrosion rate of the HCC TP2 copper tube is reduced from 10.18 mm·a^(-1) to 9.37 mm·a^(-1) by the purification effect of trace La.展开更多
It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residua...It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added.展开更多
An unusual form of localized corrsion in copper tubes was detected early in service and in leakage tests after manufacturing.The morphology of this corrosion is similar to that of an ant's nest when viewed in cros...An unusual form of localized corrsion in copper tubes was detected early in service and in leakage tests after manufacturing.The morphology of this corrosion is similar to that of an ant's nest when viewed in cross section. The corrosion mechanisms, cases ofant's nest corrosion, and preventive measures are presented.展开更多
The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation ...The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation textures of pre-drawn thin-walled copper tube are mainly composed of Copper and Y components,while with the increase of temperatures,the textures are transformed into a strong Goss texture gradually.The high-resolution microstructural characterizations indicate that the new Goss recrystallized grains nucleate and grow up within the deformed Copper grains and Y grains in different mechanisms,respectively.The tensile strength of the thin-walled copper tube decreases gradually with the increase of the temperature,while the elongation increases first and then decreases sharply due to the action of grain sizes and texture components.展开更多
It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the res...It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the residual carbon amount, it has been reported that the inner surface of a copper tube can be dissolved with a mixed acid to collect and analyze the adhering carbon;however, this method is dangerous and difficult. Therefore, two methods were examined as a simple quantitative method for obtaining the residual carbon amount using copper tubes with known residual carbon amounts. One method utilizes X-ray photoelectron spectroscopy (XPS), and the other method utilizes the potential difference between the carbon film-adhered surface and carbon film-removed surface. In regard to XPS measurement, a linear correlation was found between the spectral intensity of C and the residual carbon amount;therefore, XPS measurements were considered to be effective as a simple measurement method for the carbon film on the inner surface of a copper tube. In the evaluation method by measuring the corrosion potential, a correlation was observed between the potential difference ΔE and the residual carbon amount of the inner surface of the tube and the outer surface of the polished tube. It is considered possible to estimate the residual carbon amount from the prepared calibration curve. Through these studies, it is suggested that the carbon film was non-uniformly present on the surface of the copper tube. Therefore, the galvanic current was measured, and the effect of a non-uniform carbon film on corrosion behavior was investigated. As a result, in the measurement of galvanic current, the current flowed from the copper tube with a large amount of residual carbon (cathode) to the copper tube with a small amount of residual carbon (anode). In addition, the higher the area ratio of the carbon film was, the larger the galvanic current tended to be.展开更多
Using rolling-ploughing-extrusion compound processing methods,a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling dep...Using rolling-ploughing-extrusion compound processing methods,a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling depth and ploughing-extrusion(P-E) depth were 0.2 mm,rotating speed was 50 r/min,feed speed was 0.16 mm/r,3D fin structures with height of 0.25 mm were gotten. Two different fin structures were obtained in grooves formed with rolling-ploughing-extrusion compound forming technology and observed by scanning electron microscope(SEM). One is the compound structure with V-shaped groove and U-shaped groove,and the other is the single structure with V-shaped grooves. Two kinds of groove structures obtained by rolling processing and ploughing extrusion processing are restricted together by groove interval and rolling depth,and pitch and P-E depth,respectively. Based on the analysis of interaction of rolling and P-E processing,it is found from the result that the outside 3D integral-fin can be achieved by rolling-ploughing-extrusion compound processing when single V-shaped groove structures are formed by both rolling and P-E processing.展开更多
Thin-walled copper tubes are usually produced by multi-pass float-plug drawing deformation.In general,the annealing treatment subsequently is necessary to release the stored energy and adjusts the microstructure.In th...Thin-walled copper tubes are usually produced by multi-pass float-plug drawing deformation.In general,the annealing treatment subsequently is necessary to release the stored energy and adjusts the microstructure.In this study,an investigation on the evolution of annealing twins as well as textures in the thin-walled(Φ6 mm×0.3 mm)copper tube underwent holding time-free heat treatment was reported.Electron backscattered diffraction analysis reveals that a large number ofΣ3 boundaries(600<111>twin relationship)are produced at the early stage of heat treatment,which is due to the lower boundary energy.With the recrystallization proceeding,the migration rate of grain boundaries decreases on account of the grain growth;meanwhile,the uniqueΣ9 boundaries(38.9°<110>relationship)are formed due to the interaction of theΣ3 boundaries.As a result,the number fractions ofΣ3 boundaries and high-angle grain boundaries decrease rapidly.During the grain growth stage,a strong recrystallization texture was formed due to the fact that the grains of Goss orientation have a growth advantage over the others.As a result,the initial copper texture was transferred into the Goss texture in domination.展开更多
On September 20,the Sixth Board of Directors of Zhejiang Hailiang Co.,Ltd convened third meeting,which reviewed and approved the'Proposal on Accelerating Implementation of Industrial Upgrading,Expanding Production...On September 20,the Sixth Board of Directors of Zhejiang Hailiang Co.,Ltd convened third meeting,which reviewed and approved the'Proposal on Accelerating Implementation of Industrial Upgrading,Expanding Production Scale,Optimizing Production Layout,in Order to Meet the Strategic Target of Becoming the World’s Most Powerful Copper Tube Manufacturer at the Earliest Possible Time'.展开更多
On the morning of April 19,Golden Dragon Precise Copper Tube Group Inc.held a groundbreaking ceremony for its 80,000-ton precise copper tube project in the Wenzhou Economic and Technological Development Zone.It’s lea...On the morning of April 19,Golden Dragon Precise Copper Tube Group Inc.held a groundbreaking ceremony for its 80,000-ton precise copper tube project in the Wenzhou Economic and Technological Development Zone.It’s learned that Golden Dragon Group’s Wanzhou precision copper tube project展开更多
The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical mod...The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.展开更多
文摘The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely related to the solid-liquid interface profile, which is influenced by the distance between the cooling water location and the solidification front. The mechanical properties of the thin walled copper tube prepared by the DCUS method are near those of the normal cast copper, and it has good relative density, electrical conductivity, and elongation, which are not greatly affected by casting speed. The thin walled copper tube prepared by the DCUS method also has good processing properties that can be taken to further drawing procedures directly without an intermediate process, and obtains good mechanical properties with the total processing rate of 89.8%.
基金financially supported by the Plan of the Chinese Academy of Sciences(CAS)to Provide Science&Technology(S&T)Support and Service for National Strategic Emerging Industries(Grant No.:2012037)the Science Foundation of the Chinese Academy of Sciences(Grant No.:2012005)
文摘The TP2 copper tube was prepared with La microalloying by horizontal continuous casting(HCC). The absorptivity of La and its effects on microstructure, tensile and corrosion properties of HCC TP2 copper tube were studied by means of the inductively coupled plasma optical emission spectrometer(ICP-OES), optical microscope(OM), scanning electron microscope(SEM) and potentiodynamic polarization measurements. The results show that the absorptivity of La in the HCC TP2 copper tube is about 15% under antivacuum conditions due to the good chemical activities of La. The impurity elements in copper tube such as O, S, Pb and Si can be significantly reduced, and the average columnar dendrite spacing of the copper tube can also be reduced from 2.21 mm to 0.93 mm by adding La. The ultimate tensile strength and the elongation with and without La addition are almost unchanged. However, the annual corrosion rate of the HCC TP2 copper tube is reduced from 10.18 mm·a^(-1) to 9.37 mm·a^(-1) by the purification effect of trace La.
文摘It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added.
文摘An unusual form of localized corrsion in copper tubes was detected early in service and in leakage tests after manufacturing.The morphology of this corrosion is similar to that of an ant's nest when viewed in cross section. The corrosion mechanisms, cases ofant's nest corrosion, and preventive measures are presented.
基金financially supported by the China Postdoctoral Science Foundation(No.2019M662276)the Chinese Academy of Science and Technology Service Network Planning(No.KFJ-STS-QYZD-145)。
文摘The evolution of microstructure,textures,and mechanical properties of thin-walled copper tube during heat treatment was investigated using EBSD technique and tensile test.The results show that the initial deformation textures of pre-drawn thin-walled copper tube are mainly composed of Copper and Y components,while with the increase of temperatures,the textures are transformed into a strong Goss texture gradually.The high-resolution microstructural characterizations indicate that the new Goss recrystallized grains nucleate and grow up within the deformed Copper grains and Y grains in different mechanisms,respectively.The tensile strength of the thin-walled copper tube decreases gradually with the increase of the temperature,while the elongation increases first and then decreases sharply due to the action of grain sizes and texture components.
文摘It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the residual carbon amount, it has been reported that the inner surface of a copper tube can be dissolved with a mixed acid to collect and analyze the adhering carbon;however, this method is dangerous and difficult. Therefore, two methods were examined as a simple quantitative method for obtaining the residual carbon amount using copper tubes with known residual carbon amounts. One method utilizes X-ray photoelectron spectroscopy (XPS), and the other method utilizes the potential difference between the carbon film-adhered surface and carbon film-removed surface. In regard to XPS measurement, a linear correlation was found between the spectral intensity of C and the residual carbon amount;therefore, XPS measurements were considered to be effective as a simple measurement method for the carbon film on the inner surface of a copper tube. In the evaluation method by measuring the corrosion potential, a correlation was observed between the potential difference ΔE and the residual carbon amount of the inner surface of the tube and the outer surface of the polished tube. It is considered possible to estimate the residual carbon amount from the prepared calibration curve. Through these studies, it is suggested that the carbon film was non-uniformly present on the surface of the copper tube. Therefore, the galvanic current was measured, and the effect of a non-uniform carbon film on corrosion behavior was investigated. As a result, in the measurement of galvanic current, the current flowed from the copper tube with a large amount of residual carbon (cathode) to the copper tube with a small amount of residual carbon (anode). In addition, the higher the area ratio of the carbon film was, the larger the galvanic current tended to be.
基金Projects(50436010, 50675070) supported by the National Natural Science Foundation of ChinaProject(07118064) supported by the Natural Science Foundation of Guangdong Province, China
文摘Using rolling-ploughing-extrusion compound processing methods,a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling depth and ploughing-extrusion(P-E) depth were 0.2 mm,rotating speed was 50 r/min,feed speed was 0.16 mm/r,3D fin structures with height of 0.25 mm were gotten. Two different fin structures were obtained in grooves formed with rolling-ploughing-extrusion compound forming technology and observed by scanning electron microscope(SEM). One is the compound structure with V-shaped groove and U-shaped groove,and the other is the single structure with V-shaped grooves. Two kinds of groove structures obtained by rolling processing and ploughing extrusion processing are restricted together by groove interval and rolling depth,and pitch and P-E depth,respectively. Based on the analysis of interaction of rolling and P-E processing,it is found from the result that the outside 3D integral-fin can be achieved by rolling-ploughing-extrusion compound processing when single V-shaped groove structures are formed by both rolling and P-E processing.
基金financially supported by the Natural Science Foundation of Shandong Province under Grant No.ZR2018MEE005。
文摘Thin-walled copper tubes are usually produced by multi-pass float-plug drawing deformation.In general,the annealing treatment subsequently is necessary to release the stored energy and adjusts the microstructure.In this study,an investigation on the evolution of annealing twins as well as textures in the thin-walled(Φ6 mm×0.3 mm)copper tube underwent holding time-free heat treatment was reported.Electron backscattered diffraction analysis reveals that a large number ofΣ3 boundaries(600<111>twin relationship)are produced at the early stage of heat treatment,which is due to the lower boundary energy.With the recrystallization proceeding,the migration rate of grain boundaries decreases on account of the grain growth;meanwhile,the uniqueΣ9 boundaries(38.9°<110>relationship)are formed due to the interaction of theΣ3 boundaries.As a result,the number fractions ofΣ3 boundaries and high-angle grain boundaries decrease rapidly.During the grain growth stage,a strong recrystallization texture was formed due to the fact that the grains of Goss orientation have a growth advantage over the others.As a result,the initial copper texture was transferred into the Goss texture in domination.
文摘On September 20,the Sixth Board of Directors of Zhejiang Hailiang Co.,Ltd convened third meeting,which reviewed and approved the'Proposal on Accelerating Implementation of Industrial Upgrading,Expanding Production Scale,Optimizing Production Layout,in Order to Meet the Strategic Target of Becoming the World’s Most Powerful Copper Tube Manufacturer at the Earliest Possible Time'.
文摘On the morning of April 19,Golden Dragon Precise Copper Tube Group Inc.held a groundbreaking ceremony for its 80,000-ton precise copper tube project in the Wenzhou Economic and Technological Development Zone.It’s learned that Golden Dragon Group’s Wanzhou precision copper tube project
文摘The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.