An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calcula...An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.展开更多
Copper and cadmium ions were selectively separated from zinc sulphate aqueous solution or zinc ammonia/ammonium sulphate aqueous solution by low current density electrolysis.It was shown that the concentration of cadm...Copper and cadmium ions were selectively separated from zinc sulphate aqueous solution or zinc ammonia/ammonium sulphate aqueous solution by low current density electrolysis.It was shown that the concentration of cadmium ion in zinc sulphate solution decreased from 4.56 g/L to 0.18 g/L in an electrolysis time of 8.5 h,whilst it decreased from 5.16 g/L to lower than 0.005 g/L in zinc ammonia/ammonium sulphate aqueous solution.On the other hand,the deposition rate of copper was so low that it was difficult to separate copper and cadmium ions from the zinc ammonia/ammonium sulphate aqueous solution during electrolysis.But copper ion could be decreased to 0.002 g/L in this solution through solvent extraction by using kerosene diluted LIX984N as extractant.Therefore,it is favorable to recover cadmium ion from the zinc ammonia/ammonium sulphate solution by electrolysis after solvent extraction of copper.展开更多
The removal of cadmium, copper, and zinc from aqueous solution using activated carbon impregnated with 8-Hydroxyquinoline (oxine) was investigated in this study. The study was conducted using a completely mixed batc...The removal of cadmium, copper, and zinc from aqueous solution using activated carbon impregnated with 8-Hydroxyquinoline (oxine) was investigated in this study. The study was conducted using a completely mixed batch technique. Quantitative evaluation of the experimental results showed that the adsorption capacity of oxine impregnated activated carbon was higher than that of the virgin activated carbon for the three heavy metals. For oxine impregnated activated carbon, the Freundlieh distribution coefficient, kd , values were 23, 100, and 104 times larger than those of the virgin activated carbon for cadmium, copper, and zinc, respectively. Moreover, for oxine impregnated activated carbon, the kd values followed the sequence Cu 〉 Zn 〉 Cd which aggress well with the stability constants reported in the literature for the complexation of the three heavy metals with 8-Hydroxyquinoline.展开更多
The respective compounds of copper, cadmium and lead, owing to their strong toxic potential, as a result of industrial effluent, have left a trail of contamination in humans and the environment. This paper aimed to st...The respective compounds of copper, cadmium and lead, owing to their strong toxic potential, as a result of industrial effluent, have left a trail of contamination in humans and the environment. This paper aimed to study the electrode position on the removal of aqueous solutions of cadmium, lead and copper, using an electrolytic cell with a metallic screen cathode of carbon steel and platinum anode. Removal efficiencies were obtained by analysis of the solutions before and after treatment, using the methodology of cathodic-stripping voltammetry with a mercury drop electrode to quantify the concentrations of Cd<sup>2+</sup>, Pb2<sup>2+</sup> and Cu<sup>2+</sup>. Removal efficiencies were obtained of 94.07% for cadmium, 94.71% for lead and 96.19% for copper, demonstrating that electrolytic removal is an effective technique for the removal of these metals from simulated industrial wastewater.展开更多
A field trial was conducted to evaluate the reduction of bioavailability of heavy metals including lead (Pb), zinc (Zn) and cadmium (Cd) in a soil contaminated by mining tailings in Shaoxing, Zhejiang, China. Three co...A field trial was conducted to evaluate the reduction of bioavailability of heavy metals including lead (Pb), zinc (Zn) and cadmium (Cd) in a soil contaminated by mining tailings in Shaoxing, Zhejiang, China. Three commercial phosphate (P) fertilizers including phosphate rock (PR), calcium magnesium phosphate (CMP), and single superphosphate (SSP) were applied to the plot at three P application rates, 50, 300, and 500 g/m2 with 9 treatments and control (CK). Plants, water soluble and exchangeable (WE) extra...展开更多
A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five d...A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb.展开更多
The effect of lead, cadmium and zinc on the transcriptions and structures of 5 DNA fragments was studied by RNA slot blot hybridization and the analysis of restriction fragment length polymorphism (RFLP). The seeds of...The effect of lead, cadmium and zinc on the transcriptions and structures of 5 DNA fragments was studied by RNA slot blot hybridization and the analysis of restriction fragment length polymorphism (RFLP). The seeds of three wheat strains (Yunmai29, 1257, 5118) which had grown in contaminated area, Huize Lead Zinc Mine, Yunnan Province of China and in uncontaminated area were taken as the experimental materials. No obvious change of DNA structure was detected, but there were many differences in the DNA transcription levels. These results implied that lead, cadmium and zinc might inhibit DNA transcription and had much more effect on gene expression than structure in wheat, which might acclimate to metal pollution after having grown in pollution area for a long time and the interference of these metal ions in gene expression might be one of main mechanisms of metal toxicity and plant adaptation. The results also showed the microevolution of wheat in the lead zinc mine.展开更多
The paper discusses the tectonic setting of the fortnation of the Dexing giant copper-gold-lead-zinc deposit and its geological features and demonstrates in detail the polygenetic compound mechanism of its formation.
A hydroponics experiment was conducted to investigate the effect of copper (Cu) on cadmium (Cd), calcium (Ca), iron (Fe), and zinc (Zn) uptake by several rice genotypes. The experiment was carried out as a 2...A hydroponics experiment was conducted to investigate the effect of copper (Cu) on cadmium (Cd), calcium (Ca), iron (Fe), and zinc (Zn) uptake by several rice genotypes. The experiment was carried out as a 2×2×4 factorial with four rice genotypes and two levels of Cu and Cd in nutrient solution. Plants were grown in a growth chamber with controlled environment. The results showed a significant difference between the biomass of different rice genotypes (P 〈 0.001). The Cd and Cu concentration in the solution had no significant effect on the biomass. The addition of Cu significantly decreased Cd uptake by shoots and roots of rice (P 〈 0.001). The Cd concentration did not significantly influence Ca uptake by plants, whereas the Cu concentration did (P = 0.034). There was a significant influence of Cd on Fe uptake by shoots and roots (P 〈 0.001, P = 0.003, respectively). Zn uptake decreased significantly as the addition of Cd and Cu increased in shoots. We concluded that Cu had significant influence on Cd uptake. The possible mechanisms were discussed.展开更多
Simultaneous determination of impurity metal ions in high concentration zinc solution is very important for zinc hydrometallurgy,and the purpose is to establish a method for determining the trace Cu^2+,Cd^2+,Ni^2+and ...Simultaneous determination of impurity metal ions in high concentration zinc solution is very important for zinc hydrometallurgy,and the purpose is to establish a method for determining the trace Cu^2+,Cd^2+,Ni^2+and Co^2+in zinc electrolytes at the same time using the second derivative waves of single sweep oscillopolarography.Factors affecting the derivative waves of the ions were researched in a medium of dimethylglyoxime(DMG)-sodium citrate-sodium tetraborate.The results indicated that the interferences of a high concentration of Zn^2+and most other coexisting ions on the determination can be eliminated;when the Cu^2+,Cd^2+,Ni^2+and Co^2+are in the ranges of1×10^-7-3×10^-4,6×10^-7-2×10^-4,2×10^-8-1×10^-5and1×10^-8-3×10^-5mol/L,respectively,the relationships between the peak currents of the second derivative waves and the concentrations are linear;the detection limits to determine the Cu^2+,Cd^2+,Ni^2+and Co^2+are8×10^-8,2×10^-7,6×10^-9and4×10^-9mol/L,respectively.Without any sample pretreatment,the method was used to directly determine the trace Cu^2+,Cd^2+,Ni^2+and Co^2+in actual zinc electrolytes with satisfactory results.The method is simple,sensitive and rapid.展开更多
It is important to remove the impurities, such as copper and cadmium, from leaching solution in zinc hydrometallurgy. To improve purification efficiency, a replacement-column purification device was proposed and its m...It is important to remove the impurities, such as copper and cadmium, from leaching solution in zinc hydrometallurgy. To improve purification efficiency, a replacement-column purification device was proposed and its mass transfer characteristics and purification efficiency were experimentally studied. The results show that purification efficiency increases with the decrease of the zinc powder diameter and decreases with the increase of solution velocity. If appropriate structure and operation parameters are used, it is possible to make purification efficiency more than 99%, but the diameter of zinc powder should be larger than 0.45 mm. For the velocity of 0.05-0.7 cm/s, mass transfer coefficient kc is in the range of 3.94×10-7-2.76×10-6 m/s, and increases with the decrease of zinc powder diameter and the increase of solution velocity. Moreover, it can be derived by mass transfer correlations of Sherwood number:Sh=0.1069Re0.5Sc0.33, for 0.3<Re<6.展开更多
Computer assisted movement tracking was used to characterize the motility of two marine microalgae, lsochrysis galbana and Tetraselmis chui, and to investigate the toxicity of Cu, Pb, and Cd on motile percentage, curv...Computer assisted movement tracking was used to characterize the motility of two marine microalgae, lsochrysis galbana and Tetraselmis chui, and to investigate the toxicity of Cu, Pb, and Cd on motile percentage, curvilinear velocity, average path velocity, straight line velocity, linearity, straightness, and wobble. Except for motile percentage, all other motility parameters differed significantly between L galbana and T. chui. Based on relative motile percentage data, the median effective concentration (ECs0) of Cu on the motility of L galbana and T. chui was 31.4 and 1.3 gmol/L, respectively, while for Pb it was 37.8 and 10.9 ~tmol/L and for Cd it was 12 1.6 and 37.8 ~tmol/L, respectively. Compared to L galbana, T. chui was more sensitive to all tested metals. The toxic effect of the heavy metals on motility exhibited the following decreasing order for both species: Cu 〉 Pb 〉 Cd. Our results indicate that L galbana and T. chui motility is sensitive to heavy metals and can be used as an indicator for toxicology bioassays.展开更多
The ability for usage of common freshwater charophytes,Chara aculeolata and Nitella opaca in removal of cadmium (Cd),lead (Pb) and zinc (Zn) from wastewater was examined.C.aculeolata and N.opaca were exposed to ...The ability for usage of common freshwater charophytes,Chara aculeolata and Nitella opaca in removal of cadmium (Cd),lead (Pb) and zinc (Zn) from wastewater was examined.C.aculeolata and N.opaca were exposed to various concentrations of Cd (0.25 and 0.5 mg/L),Pb (5 and 10 mg/L) and Zn (5 and 10 mg/L) solutions under hydroponic conditions for 6 days.C.aculeolata was more tolerant of Cd and Pb than N.opaca.The relative growth rate of N.opaca was drastically reduced at high concentrations of Cd and Pb although both were tolerant of Zn.Both macroalgae showed a reduction in chloroplast,chlorophyll and carotenoid content after Cd and Pb exposure,while Zn exposure had little effects.The bioaccumulation of both Cd and Pb was higher in N.opaca (1544.3 μg/g at 0.5 mg/L Cd,21657.0 μg/g at 10 mg/L Pb) whereas higher Zn accumulation was observed in C.aculeolata (6703.5 μg/g at 10 mg/L Zn).In addition,high bioconcentration factor values (〉 1000) for Cd and Pb were observed in both species.C.aculeolata showed higher percentage of Cd and Pb removal (〉 95%) than N.opaca and seemed to be a better choice for Cd and Pb removal from wastewater due to its tolerance to these metals.展开更多
In artificially controlled pot experiments,perennial ryegrass was mixed with other leguminous plants(white clo-ver and alfalfa)and treated with lead,zinc and cadmium(337 mg·kg^(-1),648 mg·kg^(-1),and 9 mg...In artificially controlled pot experiments,perennial ryegrass was mixed with other leguminous plants(white clo-ver and alfalfa)and treated with lead,zinc and cadmium(337 mg·kg^(-1),648 mg·kg^(-1),and 9 mg·kg^(-1),respectively)to simulate compound pollution conditions.The results showed that the concentrations of heavy metals,trans-port factors,and bioconcentration factors in mixed planting of ryegrass decreased compared with those in mono-culture.Regardless of whether heavy metal pollution was introduced,mixed planting increased the aboveground and underground biomasses of ryegrass.The different mixed planting treatments had no significant impact on the chlorophyll concentration of ryegrass.The mowing time,mixed planting treatment,and heavy metal treatment had impacts on antioxidant and osmotic adjustment substances,and there were some interactions.The mixed planting treatment did not significantly affect glutathione concentration,cysteine concentration,or nonprotein thiol.Mixed planting generally increased the nitrogen and phosphorus concentrations of ryegrass while reducing the stoichiometric ratio of carbon,nitrogen,and phosphorus.These results suggest that the mixed planting of ryegrass with legumes promotes the growth of ryegrass in the presence of high concentrations of heavy metal pollution.However,it does not enhance the ability of ryegrass to remediate heavy metal pollution in the soil.展开更多
This paper focuses on evaluating the metal recovery potential of Municipal Solid Waste Incineration (MSWI) residues, with particular emphasis on the influence of pretreatment methods on MSWI fly ash and bottom ash. We...This paper focuses on evaluating the metal recovery potential of Municipal Solid Waste Incineration (MSWI) residues, with particular emphasis on the influence of pretreatment methods on MSWI fly ash and bottom ash. We assess the effectiveness of these pretreatments in enhancing the concentration of valuable metals and compare the metal content before and after treatment. Our findings reveal that water washing significantly enhances fly ash’s zinc and copper content, surpassing the minimum industrial-grade requirements. Mechanical sieving is an efficient pretreatment method for bottom ash, with the zinc concentration inversely related to particle size. Additionally, copper content peaks in the 1 - 2 mm particle size range for both bottom ash samples. These results provide valuable insights into the potential for metal recovery from MSWI residues. They hold significance for relevant research, engineering practices, and policy formulation.展开更多
基金supported by the Fundamental Research Funds for Central Universities,China(No.N2025004)the National Natural Science Foundation of China(Nos.U2102213,U1702253,52204419)+2 种基金Major Science and Technology Project of Liaoning Province,China(No.2021JH1/10400032)Major Science and Technology Project of Guangxi Province,China(No.2021AA12013)Liaoning Natural Science Foundation,China(No.2022-BS-076)。
文摘An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.
基金Projects(50774014,50734005) supported by the National Natural Science Foundation of ChinaProject(2008AA03Z514) supported by the National High-tech Research and Development Program of China
文摘Copper and cadmium ions were selectively separated from zinc sulphate aqueous solution or zinc ammonia/ammonium sulphate aqueous solution by low current density electrolysis.It was shown that the concentration of cadmium ion in zinc sulphate solution decreased from 4.56 g/L to 0.18 g/L in an electrolysis time of 8.5 h,whilst it decreased from 5.16 g/L to lower than 0.005 g/L in zinc ammonia/ammonium sulphate aqueous solution.On the other hand,the deposition rate of copper was so low that it was difficult to separate copper and cadmium ions from the zinc ammonia/ammonium sulphate aqueous solution during electrolysis.But copper ion could be decreased to 0.002 g/L in this solution through solvent extraction by using kerosene diluted LIX984N as extractant.Therefore,it is favorable to recover cadmium ion from the zinc ammonia/ammonium sulphate solution by electrolysis after solvent extraction of copper.
文摘The removal of cadmium, copper, and zinc from aqueous solution using activated carbon impregnated with 8-Hydroxyquinoline (oxine) was investigated in this study. The study was conducted using a completely mixed batch technique. Quantitative evaluation of the experimental results showed that the adsorption capacity of oxine impregnated activated carbon was higher than that of the virgin activated carbon for the three heavy metals. For oxine impregnated activated carbon, the Freundlieh distribution coefficient, kd , values were 23, 100, and 104 times larger than those of the virgin activated carbon for cadmium, copper, and zinc, respectively. Moreover, for oxine impregnated activated carbon, the kd values followed the sequence Cu 〉 Zn 〉 Cd which aggress well with the stability constants reported in the literature for the complexation of the three heavy metals with 8-Hydroxyquinoline.
文摘The respective compounds of copper, cadmium and lead, owing to their strong toxic potential, as a result of industrial effluent, have left a trail of contamination in humans and the environment. This paper aimed to study the electrode position on the removal of aqueous solutions of cadmium, lead and copper, using an electrolytic cell with a metallic screen cathode of carbon steel and platinum anode. Removal efficiencies were obtained by analysis of the solutions before and after treatment, using the methodology of cathodic-stripping voltammetry with a mercury drop electrode to quantify the concentrations of Cd<sup>2+</sup>, Pb2<sup>2+</sup> and Cu<sup>2+</sup>. Removal efficiencies were obtained of 94.07% for cadmium, 94.71% for lead and 96.19% for copper, demonstrating that electrolytic removal is an effective technique for the removal of these metals from simulated industrial wastewater.
基金the National Natural Sci-ence Foundation of China (No. 40771100, 40432004)
文摘A field trial was conducted to evaluate the reduction of bioavailability of heavy metals including lead (Pb), zinc (Zn) and cadmium (Cd) in a soil contaminated by mining tailings in Shaoxing, Zhejiang, China. Three commercial phosphate (P) fertilizers including phosphate rock (PR), calcium magnesium phosphate (CMP), and single superphosphate (SSP) were applied to the plot at three P application rates, 50, 300, and 500 g/m2 with 9 treatments and control (CK). Plants, water soluble and exchangeable (WE) extra...
文摘A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb.
文摘The effect of lead, cadmium and zinc on the transcriptions and structures of 5 DNA fragments was studied by RNA slot blot hybridization and the analysis of restriction fragment length polymorphism (RFLP). The seeds of three wheat strains (Yunmai29, 1257, 5118) which had grown in contaminated area, Huize Lead Zinc Mine, Yunnan Province of China and in uncontaminated area were taken as the experimental materials. No obvious change of DNA structure was detected, but there were many differences in the DNA transcription levels. These results implied that lead, cadmium and zinc might inhibit DNA transcription and had much more effect on gene expression than structure in wheat, which might acclimate to metal pollution after having grown in pollution area for a long time and the interference of these metal ions in gene expression might be one of main mechanisms of metal toxicity and plant adaptation. The results also showed the microevolution of wheat in the lead zinc mine.
文摘The paper discusses the tectonic setting of the fortnation of the Dexing giant copper-gold-lead-zinc deposit and its geological features and demonstrates in detail the polygenetic compound mechanism of its formation.
基金supported by the National Natural Science Foundation of China(No.40225002,20207012)the National Basic Research Program(973)of China(No.2002CB410808).
文摘A hydroponics experiment was conducted to investigate the effect of copper (Cu) on cadmium (Cd), calcium (Ca), iron (Fe), and zinc (Zn) uptake by several rice genotypes. The experiment was carried out as a 2×2×4 factorial with four rice genotypes and two levels of Cu and Cd in nutrient solution. Plants were grown in a growth chamber with controlled environment. The results showed a significant difference between the biomass of different rice genotypes (P 〈 0.001). The Cd and Cu concentration in the solution had no significant effect on the biomass. The addition of Cu significantly decreased Cd uptake by shoots and roots of rice (P 〈 0.001). The Cd concentration did not significantly influence Ca uptake by plants, whereas the Cu concentration did (P = 0.034). There was a significant influence of Cd on Fe uptake by shoots and roots (P 〈 0.001, P = 0.003, respectively). Zn uptake decreased significantly as the addition of Cd and Cu increased in shoots. We concluded that Cu had significant influence on Cd uptake. The possible mechanisms were discussed.
基金Projects (61533021,61773403) supported by the National Natural Science Foundation of China
文摘Simultaneous determination of impurity metal ions in high concentration zinc solution is very important for zinc hydrometallurgy,and the purpose is to establish a method for determining the trace Cu^2+,Cd^2+,Ni^2+and Co^2+in zinc electrolytes at the same time using the second derivative waves of single sweep oscillopolarography.Factors affecting the derivative waves of the ions were researched in a medium of dimethylglyoxime(DMG)-sodium citrate-sodium tetraborate.The results indicated that the interferences of a high concentration of Zn^2+and most other coexisting ions on the determination can be eliminated;when the Cu^2+,Cd^2+,Ni^2+and Co^2+are in the ranges of1×10^-7-3×10^-4,6×10^-7-2×10^-4,2×10^-8-1×10^-5and1×10^-8-3×10^-5mol/L,respectively,the relationships between the peak currents of the second derivative waves and the concentrations are linear;the detection limits to determine the Cu^2+,Cd^2+,Ni^2+and Co^2+are8×10^-8,2×10^-7,6×10^-9and4×10^-9mol/L,respectively.Without any sample pretreatment,the method was used to directly determine the trace Cu^2+,Cd^2+,Ni^2+and Co^2+in actual zinc electrolytes with satisfactory results.The method is simple,sensitive and rapid.
基金Project(Y2010-1-005)supported by the Collaborative Fund of Hunan Nonferrous Metals Holding Group-Central South University,China
文摘It is important to remove the impurities, such as copper and cadmium, from leaching solution in zinc hydrometallurgy. To improve purification efficiency, a replacement-column purification device was proposed and its mass transfer characteristics and purification efficiency were experimentally studied. The results show that purification efficiency increases with the decrease of the zinc powder diameter and decreases with the increase of solution velocity. If appropriate structure and operation parameters are used, it is possible to make purification efficiency more than 99%, but the diameter of zinc powder should be larger than 0.45 mm. For the velocity of 0.05-0.7 cm/s, mass transfer coefficient kc is in the range of 3.94×10-7-2.76×10-6 m/s, and increases with the decrease of zinc powder diameter and the increase of solution velocity. Moreover, it can be derived by mass transfer correlations of Sherwood number:Sh=0.1069Re0.5Sc0.33, for 0.3<Re<6.
基金supported by the National Department Public Benefit Research Foundation(No. nyhyzx07-047)the Research Project of Zhejiang Education Department(No. Y200909301)and the Open Fund of Zhejiang Key Laboratory of Exploitation and Preservation of Costal Bioresources(No. J2010002)
文摘Computer assisted movement tracking was used to characterize the motility of two marine microalgae, lsochrysis galbana and Tetraselmis chui, and to investigate the toxicity of Cu, Pb, and Cd on motile percentage, curvilinear velocity, average path velocity, straight line velocity, linearity, straightness, and wobble. Except for motile percentage, all other motility parameters differed significantly between L galbana and T. chui. Based on relative motile percentage data, the median effective concentration (ECs0) of Cu on the motility of L galbana and T. chui was 31.4 and 1.3 gmol/L, respectively, while for Pb it was 37.8 and 10.9 ~tmol/L and for Cd it was 12 1.6 and 37.8 ~tmol/L, respectively. Compared to L galbana, T. chui was more sensitive to all tested metals. The toxic effect of the heavy metals on motility exhibited the following decreasing order for both species: Cu 〉 Pb 〉 Cd. Our results indicate that L galbana and T. chui motility is sensitive to heavy metals and can be used as an indicator for toxicology bioassays.
基金supported by the grants from the Center of Excellence for Environmental Health,Toxicology and Management of Chemicals under Science&Technology Postgraduate Education and Research Development Officethe Royal Golden Jubilee Ph.D.Program under Thailand Research Fund
文摘The ability for usage of common freshwater charophytes,Chara aculeolata and Nitella opaca in removal of cadmium (Cd),lead (Pb) and zinc (Zn) from wastewater was examined.C.aculeolata and N.opaca were exposed to various concentrations of Cd (0.25 and 0.5 mg/L),Pb (5 and 10 mg/L) and Zn (5 and 10 mg/L) solutions under hydroponic conditions for 6 days.C.aculeolata was more tolerant of Cd and Pb than N.opaca.The relative growth rate of N.opaca was drastically reduced at high concentrations of Cd and Pb although both were tolerant of Zn.Both macroalgae showed a reduction in chloroplast,chlorophyll and carotenoid content after Cd and Pb exposure,while Zn exposure had little effects.The bioaccumulation of both Cd and Pb was higher in N.opaca (1544.3 μg/g at 0.5 mg/L Cd,21657.0 μg/g at 10 mg/L Pb) whereas higher Zn accumulation was observed in C.aculeolata (6703.5 μg/g at 10 mg/L Zn).In addition,high bioconcentration factor values (〉 1000) for Cd and Pb were observed in both species.C.aculeolata showed higher percentage of Cd and Pb removal (〉 95%) than N.opaca and seemed to be a better choice for Cd and Pb removal from wastewater due to its tolerance to these metals.
基金funded through projects of the National Key Research and Development Program of China(2023YFD1301401)Cheng Wei received the grant.Ministry of Science and Technology of the People’s Republic of China(https://www.most.gov.cn/index.html,accessed on 19/03/2024)+1 种基金And the Guizhou Provincial Science and Technology Projects(QKHPTRC-CXTD[2022]1011)Chao Chen received the grant.Guizhou Provincial Department of Science and Technology(https://kjt.guizhou.gov.cn/,accessed on 19/03/2024).
文摘In artificially controlled pot experiments,perennial ryegrass was mixed with other leguminous plants(white clo-ver and alfalfa)and treated with lead,zinc and cadmium(337 mg·kg^(-1),648 mg·kg^(-1),and 9 mg·kg^(-1),respectively)to simulate compound pollution conditions.The results showed that the concentrations of heavy metals,trans-port factors,and bioconcentration factors in mixed planting of ryegrass decreased compared with those in mono-culture.Regardless of whether heavy metal pollution was introduced,mixed planting increased the aboveground and underground biomasses of ryegrass.The different mixed planting treatments had no significant impact on the chlorophyll concentration of ryegrass.The mowing time,mixed planting treatment,and heavy metal treatment had impacts on antioxidant and osmotic adjustment substances,and there were some interactions.The mixed planting treatment did not significantly affect glutathione concentration,cysteine concentration,or nonprotein thiol.Mixed planting generally increased the nitrogen and phosphorus concentrations of ryegrass while reducing the stoichiometric ratio of carbon,nitrogen,and phosphorus.These results suggest that the mixed planting of ryegrass with legumes promotes the growth of ryegrass in the presence of high concentrations of heavy metal pollution.However,it does not enhance the ability of ryegrass to remediate heavy metal pollution in the soil.
文摘This paper focuses on evaluating the metal recovery potential of Municipal Solid Waste Incineration (MSWI) residues, with particular emphasis on the influence of pretreatment methods on MSWI fly ash and bottom ash. We assess the effectiveness of these pretreatments in enhancing the concentration of valuable metals and compare the metal content before and after treatment. Our findings reveal that water washing significantly enhances fly ash’s zinc and copper content, surpassing the minimum industrial-grade requirements. Mechanical sieving is an efficient pretreatment method for bottom ash, with the zinc concentration inversely related to particle size. Additionally, copper content peaks in the 1 - 2 mm particle size range for both bottom ash samples. These results provide valuable insights into the potential for metal recovery from MSWI residues. They hold significance for relevant research, engineering practices, and policy formulation.