期刊文献+
共找到22,238篇文章
< 1 2 250 >
每页显示 20 50 100
Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading 被引量:1
1
作者 Jiajian Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期650-664,共15页
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su... Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill. 展开更多
关键词 cement-based tailings fiber-reinforced backfills FRACTURE energy absorption impact loading
下载PDF
Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear 被引量:1
2
作者 Aixiang Wu Zhenqi Wang +3 位作者 Zhuen Ruan Raimund Bürger Shaoyong Wang Yi Mo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期862-876,共15页
Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations o... Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed. 展开更多
关键词 thickened tailings compression-shear coupling compressive yield stress shear yield stress CONCENTRATION
下载PDF
Malargüe Site Remediation:A Successful Solution for Uranium Mill Tailings
3
作者 BARARI E DíAZ J G +1 位作者 GIOMIA KEMPF R A 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2088-2094,共7页
Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with ... Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability. 展开更多
关键词 REMEDIATION radionuclide transfer tailings ENCAPSULATION SOLUTION sustainable
下载PDF
Determination of critical state line(CSL)for silty-sandy iron ore tailings subjected to low-high confining pressures
4
作者 Nilo Cesar Consoli João Vítor de Azambuja Carvalho +4 位作者 Alexia Cindy Wagner Hugo Carlos Scheuermann Filho Inácio Carvalho Pedro Pazzoto Cacciari João Paulo de Sousa Silva 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1684-1695,共12页
The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit... The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels. 展开更多
关键词 tailings Iron ore tailings dry stacking Silty-sandy material Critical state soil mechanics High confining pressures Particle breakage
下载PDF
Industrial utilization of arsenic-containing gold dressing tailings as pellet prepared by straight grate process
5
作者 LIU Wei GUO Zheng-qi +5 位作者 ZHU De-qing PAN Jian ZHANG Wu-ju WANG Jin ZHANG Ying-qun YIN Fu-xing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1888-1899,共12页
The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))... The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises. 展开更多
关键词 arsenic-containing gold dressing tailings pelletizing straight grate process recycling
下载PDF
Release characteristics and stabilization of heavy metals in antimony tailings in Yunnan Province,China
6
作者 LUO Guangfei ZHANG Jin +2 位作者 HAN Zhiwei OUYANG Jidi WU Pan 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3337-3352,共16页
The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tail... The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tailings(the depth of the sample taken from the ground to the deepest position of 120 cm)from the Zuoxiguo mine in Yunnan Province,Southwest China.The tailings were examined to explore the geological background,distribution characteristics,and release characteristics of heavy metals.Additionally,stabilizer treatments for heavy metals were investigated in consideration of waste treatment.The results showed that the contents of Sb and As(8.93×103 and 425 mg/kg,respectively)in the tailings were considerably higher than the local soil background values,suggesting that these metals pose a considerable threat to the surrounding environment.The geological background values of Cr,Cd,Pb,Cu,and Zn were relatively low.The results of static release showed that Sb,As,Cd,and Cr leached from the tailings more easily than Cu,Zn,and Pb under acidic conditions(pH=2.98).Geo-accumulation indices and potential ecological risk indices showed that Sb,As,Cd,and Pb were highly enriched in the tailings,whereas Cu,Cr,and Zn contents were relatively low.The single factor ecological risk index of the mining area showed that Sb and As are high ecological risk factors,whereas Cr,Cu,Zn,Cd,and Pb are not.The results of the orthogonal test results showed that by adding 15.0%(m/m)fly ash and 15.0%(m/m)zeolite powder to the quicklime and curing for 28 d,a significant stabilization effect was observed for Sb,As,and Pb.This study helps determine the priority control components for characteristic heavy metals in antimony tailings,and provides valuable insights regarding the formulation of appropriate mitigation strategies. 展开更多
关键词 Heavy metals Antimony mine tailing dumps Environmental pollution Release characteristics Stabilization efficiency
下载PDF
Fluid-Related Performances and Compressive Strength of Clinker-Free Cementitious Backfill Material Based on Phosphate Tailings
7
作者 Jin Yang Senye Liu +3 位作者 Xingyang He Ying Su Jingyi Zeng Bohumír Strnadel 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2077-2090,共14页
Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and o... Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and other key performances of cementitious backfill materials based on phosphate tailings.In particular,three solid wastes,phosphogypsum(PG),semi-aqueous phosphogypsum(HPG)and calcium carbide slag(CS),were selected to activate wet ground granulated blast furnace slag(WGGBS)and three different phosphate tailings backfill materials were prepared.Fluidity,rheology,settling ratio,compressive strength,water resistance and ion leaching behavior of backfill materials were determined.According to the results,when either PG or HPG is used as the sole activator,the fluidity properties of the materials are enhanced.Phosphate tailings backfill material activated with PG present the largest fluidity and the lowest yield stress.Furthermore,the backfill material’s compressive strength is considerably increased to 2.9 MPa at 28 days after WGGBS activation using a mix of HPG and CS,all with a settling ratio of only 1.15 percent.Additionally,all the three ratios of binder have obvious solidification effects on heavy metal ions Cu and Zn,and P in phosphate tailings. 展开更多
关键词 FLUIDITY RHEOLOGY compressive strength phosphate tailing backfill material
下载PDF
Effects of Using Municipal Solid Waste Incineration Tailings as Lightweight Aggregate on the Mechanical Properties of Specified Density Concrete
8
作者 SHANG Minggang FENG Qiong +5 位作者 ZHANG Yunsheng HE Zhongmao QIAO Hongxia XUE Cuizhen WANG Jinpen HAN Yuehui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1229-1245,共17页
Municipal solid waste incineration tailings were used as lightweight aggregate(MSWIT-LA)in the preparation of specified density concrete to study the effects on compressive strength,axial compressive strength,flexural... Municipal solid waste incineration tailings were used as lightweight aggregate(MSWIT-LA)in the preparation of specified density concrete to study the effects on compressive strength,axial compressive strength,flexural strength,microhardness,total number of pores,pore area,and pore spacing.The results showed that the internal curing and morphological effects induced by an appropriate quantity of MSWIT-LA improved the compressive response of specified density concrete specimens,whereas an excessive quantity of MSWIT-LA significantly reduced their mechanical properties.An analysis of pore structure indicated that the addition of MSWIT-LA increased the total quantity of pores and promoted cement hydration,resulting in a denser microstructure than that of ordinary concrete.The results of a principal component analysis showed that the mechanical response of specified density concrete prepared with 25%MSWIT-LA was superior to that of an equivalent ordinary concrete.It was therefore concluded that MSWIT-LA can be feasibly applied to achieve excellent specified density concrete properties while utilising municipal solid waste incineration tailings to protect the environment and alleviate shortages of sand and gravel resources. 展开更多
关键词 municipal solid waste incineration tailings X-ray computed tomography lightweight aggregate MICROHARDNESS principal component analysis
下载PDF
Non-Destructive Detection and Evaluation of Heavy Metal Pollution in Tailings Reservoir
9
作者 Zhonghua Qi Jianhua Hu Jiwei Zhang 《Journal of Environmental Protection》 2024年第9期921-933,共13页
Heavy metal pollution is a negative effect generated in the process of utilizing non-ferrous mineral. Studies about heavy metal migration detection are very important. A new method for rapid detection of heavy metal m... Heavy metal pollution is a negative effect generated in the process of utilizing non-ferrous mineral. Studies about heavy metal migration detection are very important. A new method for rapid detection of heavy metal migration based on ground penetrating radar (GPR) was provided. Comparative tests were studied from field to lab with GPR and X-ray fluorescence analysis (XRF). A tailings reservoir in the Xiangjiang River basin at Hunan Province was taken as experimental site. The downward transfer rule of heavy metal migration was confirmed through tests on systematically arranged survey lines and sampling points in tailings site. Results showed: 1) Through GPR image recognition, tailings reservoir had 3 layers. Reclaimed soil layer (the first layer) and tailings layer (the second layer) had a clear interface. However, tailings layer (the second layer) and subsoil layer (the third layer) had an obscure interface on radar images. It was concluded that heavy metal component had migrated downwards. 2) Chemical component analysis verified image recognition conclusions. Concentrations of As, Cd and Pb were significantly out of limit, while concentration of Cr was under limit according to analysis results on samples from different depths. 3) Pollution degree was evaluated. Downward migration was the main form of heavy metal migration in tailings site, upward migration occurred through adsorption at the same time. 展开更多
关键词 tailings Site Heavy Metal Migration Comparative Tests Ground Penetrating Rada
下载PDF
Tailings Dam Mining, Theoretical Considerations, and Circular Economy: A Review
10
作者 Eduardo da Rosa Aquino Vidal Félix Navarro Torres Irvyn Laurence Paniz 《Journal of Geoscience and Environment Protection》 2024年第9期77-92,共16页
Mining in tailings dams has emerged as a strategic alternative for mining companies for both economic and environmental reasons. Owing to technological limitations in recent decades, many of these dams have high metal... Mining in tailings dams has emerged as a strategic alternative for mining companies for both economic and environmental reasons. Owing to technological limitations in recent decades, many of these dams have high metal contents, emphasizing the need to evaluate the quality of these residues, especially considering the technological advancements in current concentration plants. An economic viability analysis associated with reusing these materials is crucial. From an environmental point of view, improving mining techniques for dams by considering both safety and feasibility is an advantageous option in decommissioning processes and alignment in the circular economy. In this context, representing these tailings in terms of grade quality and granulometry, as well as the associated contaminants, is essential. Geostatistical estimation and simulation methods are valuable tools for modeling tailings bodies, but they require a reliable sampling campaign to ensure acceptably low errors. From an operational perspective, tailings recovery can be conducted via dry methods, such as mechanical excavation, or hydraulic methods, such as dredging or hydraulic blasting. Dredging is a commonly used method, and cutter suction dredgers, which require pumping to transport fragmented material, are the most commonly used tools. In this paper, some practical applications of geostatistical methods for resource quantification in tailings dams will be discussed. Additionally, the main mining methods for tailings recovery in dams will be presented. Emphasis will be given to the dredging method, along with the key analysis parameters for sizing dredgers, pumps, and pipelines. 展开更多
关键词 Mining in tailings Dams Geostatistical Methods Grade Quality DREDGING
下载PDF
Erosion wear at the bend of pipe during tailings slurry transportation:Numerical study considering inlet velocity,particle size and bend angle 被引量:4
11
作者 Qiusong Chen Hailong Zhou +3 位作者 Yunmin Wang Daolin Wang Qinli Zhang Yikai Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1608-1620,共13页
Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry.Erosion wear(EW)remains the main ca... Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry.Erosion wear(EW)remains the main cause of failure in tailings slurry pipeline systems,particularly at bends.EW is a complex phenomenon influenced by numerous factors,but research in this area has been limited.This study performs numerical simulations of slurry transport at the bend by combining computational fluid dynamics and fluid particle tracking using a wear model.Based on the validation of the feasibility of the model,this work focuses on the effects of coupled inlet velocity(IV)ranging from 1.5 to 3.0 m·s^(-1),particle size(PS)ranging from 50 to 650μm,and bend angle(BA)ranging from 45°to 90°on EW at the bend in terms of particle kinetic energy and incidence angle.The results show that the maximum EW rate of the slurry at the bend increases exponentially with IV and PS and first increases and then decreases with the increase in BA with the inflection point at 60°within these parameter ranges.Further comprehensive analysis reveals that the sensitivity level of the three factors to the maximum EW rate is PS>IV>BA,and when IV is 3.0 m/s,PS is 650μm,and BA is 60°,the bend EW is the most severe,and the maximum EW rate is 5.68×10^(-6)kg·m^(-2)·s^(-1).In addition,When PS is below or equal to 450μm,the maximum EW position is mainly at the outlet of the bend.When PS is greater than 450μm,the maximum EW position shifts toward the center of the bend with the increase in BA.Therefore,EW at the bend can be reduced in practice by reducing IV as much as possible and using small particles. 展开更多
关键词 tailings transportation erosion wear pipe wear CFD numerical simulation
下载PDF
Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes 被引量:2
12
作者 Qinghai Ma Guangsheng Liu +1 位作者 Xiaocong Yang Lijie Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1490-1501,共12页
Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requi... Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation. 展开更多
关键词 tailings backfill CONSOLIDATION slurry drainage cement content physical model test
下载PDF
Mechanical behavior of iron ore tailings under standard compression and extension triaxial stress paths 被引量:1
13
作者 Alexia Cindy Wagner João Paulo de Sousa Silva +5 位作者 João Vítor de Azambuja Carvalho Ana Luisa Cezar Rissoli Pedro Pazzoto Cacciari Helder Mansur Chaves Hugo Carlos Scheuermann Filho Nilo Cesar Consoli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1883-1894,共12页
The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights ... The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights achieved,the material that compounds the structure can be subjected to different stress paths along the failure plane.The theoretical framework considered in the design of these structures generally is the critical state soil mechanics(CSSM).However,the data in the literature concerning the uniqueness of critical state line(CSL)is still controversial as the soil is subjected to different stress paths.With respect to tailings,this question is even more restricted.This paper studies two tailings with different gradings due to the beneficial processes over extension and compression paths.A series of drained and undrained triaxial tests was conducted over a range of initial densities and stress levels.In the q-p'plane,different critical stress ratio(M)values were obtained for compression and extension stress paths.However,the critical state friction angle is very similar with a slightly higher critical state friction angle for extension tests.Curved stress path dependent CSLs were obtained in the n-lnp0 plane with the extension tests below the CSL defined in compression.Regarding the fines content,the studied tailings presented very similar M and critical state friction angle values.However,the fines content af-fects the volumetric behavior of the studied tailings and the CSLs on the n-lnp0 plane shift downwards with the increasing fines content for compression and extension tests.In relation to dilatancy analysis,the fines content did not present an evident influence on the dilatancy of the materials.However,different values of mean stress ratio N were obtained between compression and extension tests and can corroborate the existence of non-unique CSLs for these materials. 展开更多
关键词 Iron ore tailings(IOTs) Dry stacking Critical state soil mechanics Extension tests Stress path
下载PDF
Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation:Investigation of the photocatalytic mechanism
14
作者 Yang Xue Xiaoming Liu +2 位作者 Na Zhang Yang Shao Chunbao(Charles)Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2364-2374,共11页
Photocatalytic processes are efficient methods to solve water contamination problems,especially considering dyeing wastewater disposal.However,high-efficiency photocatalysts are usually very expensive and have the ris... Photocatalytic processes are efficient methods to solve water contamination problems,especially considering dyeing wastewater disposal.However,high-efficiency photocatalysts are usually very expensive and have the risk of heavy metal pollution.Recently,an iron oxides@hydrothermal carbonation carbon(HTCC)heterogeneous catalyst was prepared by our group through co-hydrothermal treatment of carbohydrates and zinc extraction tailings of converter dust.Herein,the catalytic performance of the iron oxides@HTCC was verified by a nonbiodegradable dye,methylene blue(MB),and the catalytic mechanism was deduced from theoretical simulations and spectroscopic measurements.The iron oxides@HTCC showed an excellent synergy between photocatalysis and Fenton-like reactions.Under visible-light illumination,the iron oxides@HTCC could be excited to generate electrons and holes,reacting with H_(2)O_(2)to produce·OH radicals to oxidize and decompose organic pollutants.The removal efficiency of methylene blue over iron oxides@HTCC at 140 min was 2.86 times that of HTCC.The enhanced catalytic performance was attributed to the advantages of iron oxides modification:(1)promoting the excitation induced by photons;(2)improving the charge transfer.Furthermore,the iron oxides@HTCC showed high catalytic activity in a wide pH value range of 2.3-10.4,and the MB removal efficiency remained higher than 95% after the iron oxides@HTCC was recycled 4 times.The magnetically recyclable iron oxides@HTCC may provide a solution for the treatment of wastewater from the textile industry. 展开更多
关键词 PHOTOCATALYSIS photo-Fenton reaction methylene blue degradation tailings utilization
下载PDF
Effect of Natural Zeolite on Pore Structure of Cemented Uranium Tailings Backfill
15
作者 Fulin Wang Xinyang Geng +1 位作者 Zhengping Yuan Shijiao Yang 《Journal of Renewable Materials》 SCIE EI 2023年第3期1469-1484,共16页
The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag(CUTB),but these materials m... The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag(CUTB),but these materials may participate in the hydration reaction of the cementitious materials,which could have a certain impact on the pore structure of the CUTB,thus affecting its mechanical properties and leaching resistance.In this paper,natural zeolite is selected as the backfill-modified material,and it is added to alkali-activated slag paste(AASP)and CUTB in cementitious material proportions of 4%,8%,12%,and 16%to prepare AASP mixtures and CUTB mixtures containing environmental functional minerals.After the addition of natural zeolite,the porosity of the CUTB generally increases,but when the content is 4%,the porosity decreases to 22.30%.The uniaxial compressive strength(UCS)of the CUTB generally decreases,but the decrease is the smallest when the content is 4%,and the UCS is 12.37 MPa.The addition of natural zeolite mainly reduces the number of fine pores in the CUTB,but the pores with relaxation times T_(2)of greater than 10 ms account for about 10%of the total pores,and there are a certain number of large pores in the CUTB.The main product of alkali-activated slag is calcium(alumino)silicate hydrate(C-(A)-S-H gel).When natural zeolite is added,the hydration products develop towards denser products with a high degree of polymerization and the formation of low polymerization products is reduced.This affects the internal fracture pores of the hydration products and the interface pores of the CUTB,has an irregular effect on the pore characteristics of the CUTB,and influences the UCS. 展开更多
关键词 Pore structure cemented backfill natural zeolite uranium tailings LF-NMR
下载PDF
Influence of rheological characteristics on the fluidization catastrophe of tailings flows
16
作者 WANG Dao-zheng LIAN Bao-qin +3 位作者 WANG Xin-gang CHEN Xiao-qing WANG Jia-ding WANG Fei 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2628-2643,共16页
Limited by mining technology,mineral exploitation can produce large amounts of tailings.Heavy summer rainfall or seasonal freeze-thaw can lead to physical and chemical modification of tailing material in mountainous a... Limited by mining technology,mineral exploitation can produce large amounts of tailings.Heavy summer rainfall or seasonal freeze-thaw can lead to physical and chemical modification of tailing material in mountainous areas,resulting in fluidized tailings flow and severe disaster losses.Therefore,aiming at the problem of tailings fluidization catastrophe,this paper tried to reveal the rheological mechanism of tailings fluidization transformation by combining rheological tests and theoretical analysis.The results show that the yield stress increases with decreasing temperature,and when the density of debris flow(ρ)is more than 1.9 g/cm~3,this behavior becomes more pronounced as the density increases.The storage modulus decreases by at least two orders of magnitude at the solid-fluid transition under amplitude test sweep.Storage and loss modulus in the linear viscoelastic range and yield stress have an exponential growth relationship with sediment concentration.In addition,a stress constitutive relation and a new exponential law describing the evolution of yield stress required for solid-liquid transformation were proposed,and the relationship is further strengthened through a comprehensive analysis of existing results,which expands the evaluation application of the rheological characteristics of tailings flow.This paper provides a new insight into the rheological properties of tailing and how they occur through solid-liquid transition under different environments,which is beneficial to geological hazard prevention and the ecological remediation of the mining area. 展开更多
关键词 Debris flow tailing deposits Rheological properties Solid-liquid transition Yield stress
下载PDF
Chemical weathering profile in the V–Ti–Fe mine tailings pond:a basalt-weathering analog
17
作者 Xiaolin Zhang Yinger Deng +2 位作者 Liang Tang Zhengmeng Hou Jinsong Yang 《Acta Geochimica》 EI CAS CSCD 2023年第6期1035-1050,共16页
The(ultra-)mafic mine tailings pond revealed a weathering discrepancy in the tailings profile,which provided a valuable analog to assess the role of carbonate and silicate weathering of the basalt.In this study,drill-... The(ultra-)mafic mine tailings pond revealed a weathering discrepancy in the tailings profile,which provided a valuable analog to assess the role of carbonate and silicate weathering of the basalt.In this study,drill-cores samples were selected from the Wanniangou V–Ti–Fe mine tailings pond(Sichuan province,China)to investigate the mineralogicand geochemical characteristics in the tailings profile.The results reveal(1)the tailings pond profile consist of upper and lower layers.The upper layer is composed of carbonate weathering(1.4%),which was formed in the initial stages of tailings exposure and represented a minimal weathering degree.(2)The lower layer was primarily observed at the aquifer zone of the tailings pond,and was consistent with 0.45%carbonate weathering and 48.4%silicate weathering.(3)The weathering discrepancy in the tailings profile could be due to the sulfide oxidation and aerobic/flowing aquifer,which facilitate the water-tailings reactions.The tailings profile provides an analog to studying basalt weathering,as it spans both carbonate and silicate weathering.This research reinforces the idea that silicate weathering is predominant in basaltic areas and plays a crucial role in regulating atmospheric CO_(2)(carbon dioxide)levels on Earth. 展开更多
关键词 V–Ti–Fe mine tailings pond profile Drill core Basalt weathering
下载PDF
Preparation and Microwave Absorbing Properties of Double-layer Fine Iron Tailings Cementitious Materials
18
作者 LI Huawei WANG Rong +3 位作者 WANG Yulin LIU Feiyu WANG Qian WEI Muwang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1126-1135,共10页
To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into diffe... To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials. 展开更多
关键词 microwave absorbing properties iron tailings electromagnetic parameters single-layer structure double-layer structure impedance matching
下载PDF
Preparation of Thermal Insulation Ceramics Using Felsic Tailings as Main Raw Material and Soda-ash Dregs as Flux
19
作者 王志明 YAO Geng +7 位作者 WANG Qiang ZHU Xiangnan QU Meiyun ZHAO Wei LIU Qing SUN Shaokang XIA Chuanbo 吕宪俊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期31-41,共11页
Low-cost thermal insulation porous ceramics with uniform pore diameter and low bulk density were prepared with soda-ash dregs and felsic tailings.We investigated the effect of temperature,foaming agent,fluxing agent,A... Low-cost thermal insulation porous ceramics with uniform pore diameter and low bulk density were prepared with soda-ash dregs and felsic tailings.We investigated the effect of temperature,foaming agent,fluxing agent,Al_(2)O_(3)and CaO content on the pore structure and crystal phase of porous ceramics.The effect of Ca^(2+)in soda-ash dregs on the preparation of quartz-feldspar based porous ceramics was studied.The results showed that the contribution of Ca^(2+)to the preparation of porous ceramics in this system was mainly to accelerate the Si-O bond fracture and reduce the sintering temperature at the initial stage of sintering,which destroyed the needle-like feldspar in the high temperature melt and reduced the melt viscosity,thus reduced the foaming resistance and promoted the porous products with uniform pore size distribution.The Ca^(2+)content on the high side can participate in the formation of crystals in sintering.The generated needle-like diopside and augite,which have small length-diameter ratio,will negligibly change in the viscosity of melt at high temperatures,and their inhibition effect on pores is not as good as that of feldspar with large length-diameter ratio,resulting in the merger and collapse of pores.But the increase of diopside and augite can improve the compressive strength of porous products to some extent.Porous ceramic products containing needle-like feldspar phase can be prepared by using two kinds of solid waste,which can improve the compressive strength of the products and reduce the raw material cost and energy consumption while comprehensively utilizing the double solid waste.The optimal product has a bulk density of 0.45 g/cm^(3),a compressive strength of 3.17 MPa,and a thermal conductivity of 0.11 W/(m·K). 展开更多
关键词 felsic tailings Ca-riched Soda-ash dregs low-cost thermal insulation porous ceramics high content of solid waste transformation of needle-like crystal phase
下载PDF
Potential for Use of Iron Mining Tailings Calcined in a Flash Furnace as Pozzolanic Material
20
作者 Evandro Moraes da Gama Paulo Roberto Gomes Brandão +2 位作者 Talita Caroline Miranda Tamiris Seerig Scott Ferson 《Geomaterials》 2023年第3期35-50,共16页
This paper presents a study of the potential use of iron mining tailings as artificial pozzolan (metakaolin) after their submission to thermal treatment via calcination in a flash furnace. The research consists of the... This paper presents a study of the potential use of iron mining tailings as artificial pozzolan (metakaolin) after their submission to thermal treatment via calcination in a flash furnace. The research consists of the characterization of the tailings before and after calcination, chemical, mineralogical, thermogravimetric, and mechanical strength analyses were conducted. The results were compared with those for commonly used pozzolans, metakaolin, and similarities were identified. The study of the morphology of the particles before and after calcination was conducted through analyses of images obtained by scanning electronic microscope. The pozzolanic activity of the fine mining tailings calcined with flash technology was evaluated in uniaxial compression trials, which showed excellent results. 展开更多
关键词 Mine tailings Flash Calcination Pozzolanic Activity Compressive Strength
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部