Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this st...Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time 〉 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury展开更多
BACKGROUND: Exogenous neural stem cell transplantation promotes neural regeneration. However, various types of stem cells transplantation outcomes remain controversial. OBJECTIVE: To explore distribution, proliferat...BACKGROUND: Exogenous neural stem cell transplantation promotes neural regeneration. However, various types of stem cells transplantation outcomes remain controversial. OBJECTIVE: To explore distribution, proliferation and differentiation of human neural stem cells (hNSCs) and human umbilical cord blood stem cells (hUCBSCs) following transplantation in ischemic brain tissue of rats, and to compare therapeutic outcomes between hNSCs and hUCBSCs. DESIGN, TIME AND SETTING: Randomized controlled animal studies were performed at the Experimental Animal Center of Nanjing Medical University and Central Laboratory of Second Affiliated Hospital of Nanjing Medical University of China from September 2008 to April 2009. MATERIALS: hNSCs were harvested from brain tissue of 10 13 week old fetuses following spontaneous abortion, and hUCBSCs were collected from umbilical cord blood of full-term newborns at the Second Affiliated Hospital of Nanjing Medical University of China. hNSCs and hUCBSCs were labeled by 5-bromodeoxyuridine (BrdU) prior to transplantation. METHODS: Rat models of cerebral ischemia were established by the suture method. A total of 60 healthy male Sprague Dawley rats aged 7-9 weeks were randomly assigned to hNSC transplantation, hUCBSC transplantation and control groups. The rat models in the hNSC transplantation, hUCBSC transplantation and control groups were infused with hNSC suspension, hUCBSC suspension and saline via the caudal vein, respectively. MAIN OUTCOME MEASURES: The distribution, proliferation and differentiation of hNSCs and hUCBSCs in ischemic brain tissue were observed using immunohistochemical methods. Neurological function in rats was assessed using the neurological severity score. RESULTS: The number of BrdU-positive cells was significantly greater in the hNSC transplantation group compared with hUCBSC transplantation group at 14 days following transplantation (P 〈 0.05) The number of BrdU-positive cells reached a peak at 28 days following transplantation. Nestin-positive, glial fibrillary acidic protein-positive, cyclic nucleotide 3' phosphohydrolase-positive and neuron specific enolase-positive cells were visible following transplantation. No significant difference was determined in the constituent ratio of various cells between hNSC and hUCBSC transplantation groups (P 〉 0.05). The neurological severity score was significantly decreased in rats at 21 days following transplantation (P 〈 0.05). No significant difference was detected in neurological severity score between hNSC and hUCBSC transplantation groups at various time points (P 〉 0.05). CONCLUSION: The transplanted hNSCs and hUCBSCs can migrate into ischemic brain tissue, proliferate and differentiate into neuron-like, astrocyte-like and oligodendrocyte-like cells, and improve neurological function in rats with cerebral ischemia.展开更多
BACKGROUND: Transplanted mononuclear cell (MNC) of umbilical blood can survive in central nervous system (CNS) of host through blood brain barrier, differentiate into nerve cells, migrate to damaged site and integrate...BACKGROUND: Transplanted mononuclear cell (MNC) of umbilical blood can survive in central nervous system (CNS) of host through blood brain barrier, differentiate into nerve cells, migrate to damaged site and integrate morphological structure and function with nerve cells of host so as to improve deficiencies of sensatory function, motor function and cognitive function and influence on stroke sequela. OBJECTIVE: To observe the vein transplantation of human umbilical cord blood stem cells (HUCBSC) for improving neurological function, limb function and activity of daily living of patients with stroke and evaluate the reliability. DESIGN: Self-controlled study. SETTING: Department of Neurosurgery, the Second People's Hospital of Zhengzhou City; Red-crossed Blood Center of Henan Province; Department of Neurosurgery, the Fist Affiliated Hospital of Zhengzhou University. PARTICIPANTS: A total of 10 patients with stroke sequela were selected from Department of Cerebral Surgery, the Second People's Hospital of Zhengzhou City from April to December 2005. There were 9 males and 1 female aged from 35 to 75 years with the mean age of 56 years. All of them were diagnosed with CT and MRI examination and coincidence with diagnostic criteria of stroke established by the Fourth National Academic Meeting for Cerebrovascular Disease. All patients provided informed consent. METHODS: 80-140 mL umbilical blood of term birth of newborn was selected hermetically and maintained in sterile plastic bag. And then, the blood was centrifugated at the speed of 1 500 r/min for 30 minutes at 22 ℃ in order to separate MNC, i.e., HUCBSC. In addition, after final diagnosis during hospitalization, stroke patients were perfused with HUCBSC through superficial vein of back of the hand. Each patient was averagely perfused with 6 portions of HUCBSC (cellular numbers ≥ 1×108/portion) and the interval between each portion was 1-7 days with the mean interval of 4 days. MAIN OUTCOME MEASURES: ① Neurological function of stroke patients was evaluated with neurological function deficiency (NFD) before treatment and at 3 months after treatment. The scale includes consciousness, level fix function, facial paralysis, language, muscle force of upper limbs, muscle force of lower limb and step function. The total scores ranged from 0 to 45; meanwhile, the lower the scores were, the better the neurological function was. ② Motor function of injured limbs was evaluated with Fugl-Meyer Assessment (FMA), including motor function of upper limbs, motor function of lower limbs, balance ability, sensory function and motion of joint. The total scores ranged from 0 to 226; meanwhile, the higher the scores were, the better the motor function of limbs was. ③ Activities of daily living (ADL) was evaluated with Barthel Index (BI), including having meals, taking a bath, dressing oneself, putting on clothes, walking in balance and stair activity. The total scores ranged from 0 to 100; meanwhile, the higher the scores were, the stronger the ADL was. RESULTS: A total of 10 patients were involved in the final analysis. After treatment, NFD of stroke patients was (10.9±5.09) points, which was lower than that before treatment [(25.4±6.09) points, t =8.213, P < 0.01]. In addition, after treatment, FMA and BI of stroke patients were (80.9±25.00) points and (81.1±15.93) points, respectively, which were higher than those before treatment [(31.9±21.85) points, (36.2±19.41) points, t =13.024, 13.670, P < 0.01]. Immuno-suppressive drugs were not used during the whole therapeutic procedure; moreover, immunological rejection and allergic reaction were not observed during the same period. CONCLUSION: Transplanting HUCBSC through superficial vein of back of the hand is regarded as a simple and safe method for the treatment of stroke sequela.展开更多
Clinical and laboratory results document psoriatic arthritis in a 56-year old patient. The symptoms did not resolve with standard treatments(nonsteroidal anti-inflammatory drugs, steroids and methotrexate). TNF-alpha ...Clinical and laboratory results document psoriatic arthritis in a 56-year old patient. The symptoms did not resolve with standard treatments(nonsteroidal anti-inflammatory drugs, steroids and methotrexate). TNF-alpha inhibitors(certolizumab pegol and adalimumab) were added to the treatment regime, with some adverse effects. A trial of human umbilical cord stem cell therapy was then initiated. The stem cells were enriched and concentrated from whole cord blood, by removal of erythrocytes and centrifugation. The patient received several infusions of cord blood stem cells, through intravenous and intra-articular injections. These stem cell treatments correlated with remission of symptoms(joint pain and psoriatic plaques) and normalized serologic results for the inflammatory markers C-reactive protein and erythrocyte sedimentation rate. These improvements were noted within the first thirty days post-treatment, and were sustained for more than one year. The results of this trial suggest that cord blood stem cells may have important therapeutic value for patients with psoriatic arthritis, particularly for those who cannot tolerate standard treatments.展开更多
Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit model...Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10^6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.展开更多
Objective:The chimeric mice were prepared by microinjection of blastocyst cavity using umbilical cord blood stem cells(UCBSCs)of Enhanced Green Fluorescent Protein(EGFP)-transgenic mouse,which was expected to provide ...Objective:The chimeric mice were prepared by microinjection of blastocyst cavity using umbilical cord blood stem cells(UCBSCs)of Enhanced Green Fluorescent Protein(EGFP)-transgenic mouse,which was expected to provide a theoretical and experimental basis for the study of in-vivo differentiation of adult stem cells.Methods:Mouse UCBSCs expressing green fluorescence was microinjected into blastocyst cavity and several blastocysts were transferred into uterus of pseudo pregnant mouse.First of all,new-born candidate chimeric mice were observed through feather color.Secondly,the genomic DNA and total RNA were extracted to analyze chimeric rate in several tissues.Finally,flow cytometry was used to detect percentage of green fluorescent cells mice in several tissues.Results:The UCBSCs expressing green fluorescent protein were successfully isolated.After flow cytometry analysis,the proportion of cells expressing green fluorescence was 80.25%.Through microinjection and embryo transfer,we got five white new-born mice and no chimeric feather color was observed.The analyses of PCR and RT-PCR were carried out to detect EGFP gene using six tissues including heart muscle,liver,lung,skin,leg muscle and adipose tissue.The results showed that the leg muscle and adipose tissue of two mice were positive and the other tissues and six tissues of the other 3 mice were all negative.The leg muscle and adipose tissue of two positive mice were digested into single-cells suspension and were carried out flow cytometry analysis.The results showed that the average chimeric rates of leg muscle and adipose tissue of two positive mice were 9.87% and 5.78%,respectively.Conclusions:The results demonstrated that adult UCBSCs could differentiate into leg muscle and adipose tissue in vivo.展开更多
Umbilical cord blood is the blood found in the vessels of the umbilical cord and placenta. It has been shown that this blood contains at least three populations of stem cells, each with unique features and properties....Umbilical cord blood is the blood found in the vessels of the umbilical cord and placenta. It has been shown that this blood contains at least three populations of stem cells, each with unique features and properties. Due to the absence of standardized criteria for characterizing and naming cord blood stem cells, different terms and acronyms have been introduced to describe certain cell populations. Besides the confusion caused by the introduction of these different names, some of the terms used by different groups are inaccurate and misleading when considering the molecular and cellular properties of such cells. Hence, in this review we provide simple and direct descriptions of different populations of stem cells in umbilical cord blood in an attempt to clarify the confusion caused by the existence of multiple names given to certain cord blood stem cells. We also discuss the potential use of umbilical cord blood stem cells as a therapeutic tool for several diseases and disorders in light of ongoing clinical trials.展开更多
CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities) is an autosomal dominant disorder cha...CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities) is an autosomal dominant disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the CHD7 gene are the major cause of CHARGE syndrome. Here, we present a family who sought genetic counseling because of a newborn with dysmorphic features suggesting CHARGE syndrome. The baby died three months later. Afterwards, a molecular genetic testing for sequence analysis of the CHD7 coding region was performed with DNA extracted from umbilical cord blood stem cells confirming the diagnosis of CHARGE syndrome. Although the diagnosis is first suspected clinically, in the newborn case presented here, we illustrate the importance of the molecular testing to confirm the diagnosis, and to enable precise genetic counseling. Also, even though cord blood has been stored in private banks for more than ten years, there is as yet no routine clinical application of autologous (self-donation) hematopoietic stem cells from cord blood. Now, we illustrate for the first time the usefulness of umbilical cord blood stem cells for diagnosis and genetic counseling in a case that involve a dead propositus.展开更多
BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) ...BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells. OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1×10^6 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis. RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P 〈 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P 〈 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration.展开更多
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated arou...In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.展开更多
BACKGROUND: Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity. OBJECTIVE: To investigate isolation and in vitro cultivation methods of human cord...BACKGROUND: Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity. OBJECTIVE: To investigate isolation and in vitro cultivation methods of human cord blood MSCs, to observe expression of neural stem cell (NSC) marker mRNA under induction, and to detect tumorigenicity in animals. DESIGN, TIME AND SETTING: A cell biological, in vitro trial and a randomized, controlled, in vivo experiment were performed at the Department of Neurology, Daping Hospital at the Third Military Medical University of Chinese PLA from August 2006 to May 2008. MATERIALS: Umbilical cord blood was collected from full-term-delivery fetus at the Department of Gynecology and Obstetrics of Daping Hospital, China. Eighteen BALB/C nu/nu nude mice were randomly assigned to three groups: back subcutaneous, cervical subcutaneous, and control, with 6 mice in each group. METHODS: Monocytes were isolated from heparinized human cord blood samples by density gradient centrifugation and then adherent cultivated in vitro to obtain MSC clones. After the cord blood MSCs were cultured for 7 days with nerve growth factor and retinoic acid to induce differentiation into NSCs, the cells (adjusted density of 1 × 10^7/mL) were prepared into cell suspension. In the back subcutaneous and cervical subcutaneous groups, nude mice were hypodermically injected with a 0.5-mL cell suspension into the back and cervical regions, respectively. In the control group, nude mice received a subcutaneous injection of 0.5 mL physiological saline into the back or cervical regions, respectively. MAIN OUTCOME MEASURES: Cellular morphology was observed by inverted microscopy, cultured cord blood MSCs were examined by flow cytometry, expression of nestin and musashi-1 mRNA was detected by reverse-transcriptase polymerase chain reaction prior to and after induction, and tumorigenicity following cord blood MSC transplantation was assayed by hematoxylin-eosin staining. RESULTS: Following adherent cultivation, the majority of cord blood monocytes became rhombic and strongly expressed CD29, but not CD34, CD1 la, or CD11 b. These results supported previously known characteristics of cord blood MSCs. Following differentiation induction, nestin and musashi-1 were expressed on the surface of NSCs, exhibiting strongest expression at 48 hours, and subsequently reducing expression. Cultured cord blood MSCs were not tumorigenic in the nude mice. Cellular morphology displayed no malignant changes between the control and subcutaneous groups. CONCLUSION: MSCs can be isolated from human cord blood, efficiently expanded under culture conditions, differentiated into NSCs following induction, and display no tumorigenicity in nude mice.展开更多
The feasibility of using cord blood mesenchymal stem/progenitor cells (CB-MSPCs) to regenerate cardiomyocytes and the optimal inducing conditions were investigated. The CB mononuclear cells were cultured in low serum ...The feasibility of using cord blood mesenchymal stem/progenitor cells (CB-MSPCs) to regenerate cardiomyocytes and the optimal inducing conditions were investigated. The CB mononuclear cells were cultured in low serum DMEM medium to produce an adherent layer. After expansion, the adherent cells were added into cardiomyocyte inducing medium supplemented with 5-azacytidine. Cardiogenic specific contractile protein troponin T staining was performed to identify the cardiomy-ocyte-like cells. The results showed that the frequency of CB-MSPCs clones in CB mononuclear cells was 0. 5×10-6 and about 1. 3×107-fold expansion was achieved within 20 sub-cultivation. After car-diogenic induction, 70 % CB-MSPCs was differentiated into cardiomyocyte-like cells. It was indicated that low serum culture could expand CB-MSPCs extensively and the expanded CB-MSPCs could be induced to differentiate into cardiomyocyte-like cells in high efficiency.展开更多
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-d...Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e展开更多
The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation a...The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation and creep properties of the optic nerve change after injury.Moreover,human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal.To validate this hypothesis,a rabbit model of optic nerve injury was established using a clamp approach.At 7 days after injury,the vitreous body received a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells.At 30 days after injury,stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly,with pathological changes in the injured optic nerve also noticeably improved.These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves,and thereby contributes to nerve recovery.展开更多
AIM:To understand the neuroprotective mechanism of human umbilical cord blood-derived mesenchymal stem cells(hUCB-MSCs) against amyloid-β42(Aβ42) exposed rat primary neurons.METHODS:To evaluate the neuroprotective e...AIM:To understand the neuroprotective mechanism of human umbilical cord blood-derived mesenchymal stem cells(hUCB-MSCs) against amyloid-β42(Aβ42) exposed rat primary neurons.METHODS:To evaluate the neuroprotective effect of hUCB-MSCs,the cells were co-cultured with Aβ42-exposed rat primary neuronal cells in a Transwell apparatus.To assess the involvement of soluble fac-tors released from hUCB-MSCs in neuroprotection,an antibody-based array using co-cultured media was conducted.The neuroprotective roles of the identified hUCB-MSC proteins was assessed by treating recombi-nant proteins or specific small interfering RNAs(siRNAs) for each candidate protein in a co-culture system.RESULTS:The hUCB-MSCs secreted elevated levels ofdecorin and progranulin when co-cultured with rat pri-mary neuronal cells exposed to Aβ42.Treatment with recombinant decorin and progranulin protected from Aβ42-neurotoxicity in vitro.In addition,siRNA-mediat-ed knock-down of decorin and progranulin production in hUCB-MSCs reduced the anti-apoptotic effects of hUCB-MSC in the co-culture system.CONCLUSION:Decorin and progranulin may be involved in anti-apoptotic activity of hUCB-MSCs exposed to Aβ42.展开更多
BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation duri...BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments.展开更多
Previous in vivo experiments have shown that human umbilical cord blood mesenchymal stem cells can promote the proliferation and differentiation of damaged celts, and help to repair damaged sites, Recent studies have ...Previous in vivo experiments have shown that human umbilical cord blood mesenchymal stem cells can promote the proliferation and differentiation of damaged celts, and help to repair damaged sites, Recent studies have reported that umbilical cord blood-derived mesenchymal stem cells can differentiate into neurons and glial cells. Recent studies have reported that the repair mechanisms underlying cord blood stern cells involve the replacement of damaged cells and mediation of the local micro-environment.展开更多
OBJECTIVE: The aim of this study was to evaluate the effectiveness and safety of stem cell transplantation for spinal cord injury(SCI).DATA SOURCES: PubM ed, EMBASE, Cochrane, China National Knowledge Infrastructu...OBJECTIVE: The aim of this study was to evaluate the effectiveness and safety of stem cell transplantation for spinal cord injury(SCI).DATA SOURCES: PubM ed, EMBASE, Cochrane, China National Knowledge Infrastructure, China Science and Technology Journal, Wanfang, and Sino Med databases were systematically searched by computer to select clinical randomized controlled trials using stem cell transplantation to treat SCI, published between each database initiation and July 2016. DATA SELECTION: Randomized controlled trials comparing stem cell transplantation with rehabilitation treatment for patients with SCI. Inclusion criteria:(1) Patients with SCI diagnosed according to the American Spinal Injury Association(ASIA) International standards for neurological classification of SCI;(2) patients with SCI who received only stem cell transplantation therapy or stem cell transplantation combined with rehabilitation therapy;(3) one or more of the following outcomes reported: outcomes concerning neurological function including sensory function and locomotor function, activities of daily living, urination functions, and severity of SCI or adverse effects. Studies comprising patients with complications, without full-text, and preclinical animal models were excluded. Quality of the included studies was evaluated using the Cochrane risk of bias assessment tool and Rev Man V5.3 software, provided by the Cochrane Collaboration, was used to perform statistical analysis. OUTCOME MEASURES: ASIA motor score, ASIA light touch score, ASIA pinprick score, ASIA impairment scale grading improvement rate, activities of daily living score, residual urine volume, and adverse events.RESULTS: Ten studies comprising 377 patients were included in the analysis and the overall risk of bias was relatively low level. Four studies did not detail how random sequences were generated, two studies did not clearly state the blinding outcome assessment, two studies lacked blinding outcome assessment, one study lacked follow-up information, and four studies carried out selective reporting. Compared with rehabilitation therapy, stem cell transplantation significantly increased the lower limb light touch score(odds ratio(OR) = 3.43, 95% confidence interval(CI): 0.01 – 6.86, P = 0.05), lower limb pinprick score(OR = 3.93, 95%CI: 0.74 – 7.12, P = 0.02), ASI grading rate(relative risk(RR) = 2.95, 95%CI: 1.64 – 5.29, P = 0.0003), and notably reduced residual urine volume(OR = –8.10, 95%CI: –15.09 to –1.10, P = 0.02). However, stem cell transplantation did not significantly improve motor score(OR = 1.89, 95%CI: –0.25 to 4.03, P = 0.08) or activities of daily living score(OR = 1.12, 95%CI: –1.17 to 4.04, P = 0.45). Furthermore, stem cell transplantation caused a high rate of mild adverse effects(RR = 14.49, 95%CI: 5.34 – 34.08, P 〈 0.00001); however, these were alleviated in a short time. CONCLUSION: Stem cell transplantation was determined to be an efficient and safe treatment for SCI and simultaneously improved sensory and bladder functions. Although associated minor and temporary adverse effects were observed with transplanted stem cells, spinal cord repair and axon remyelination were apparent. More randomized controlled trials with larger sample sizes and longer follow-up times are needed to further validate the effectiveness of stem cell transplantation in the treatment of SCI.展开更多
Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduit...Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduits injected with human umbilical cord stem cells could be an effective method to solve such problems,but studies focused on the best type of Y-tube conduit remain controversial.Therefore,the present study evaluated the applicability and efficacy of various types of Y-tube conduits containing human umbilical cord stem cells for treating rat femoral nerve defects on their bifurcation points.At 12 weeks after the bridging surgery that included treatment with different types of Y-tube conduits,there were no differences in quadriceps femoris muscle weight or femoral nerve ultrastructure.However,the Y-tube conduit group with longer branches and a short trunk resulted in a better outcome according to retrograde labeling and electrophysiological analysis.It can be concluded from the study that repairing a mixed nerve defect at its bifurcation point with Y-tube conduits,in particular those with long branches and a short trunk,is effective and results in good outcomes.展开更多
文摘Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time 〉 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury
文摘BACKGROUND: Exogenous neural stem cell transplantation promotes neural regeneration. However, various types of stem cells transplantation outcomes remain controversial. OBJECTIVE: To explore distribution, proliferation and differentiation of human neural stem cells (hNSCs) and human umbilical cord blood stem cells (hUCBSCs) following transplantation in ischemic brain tissue of rats, and to compare therapeutic outcomes between hNSCs and hUCBSCs. DESIGN, TIME AND SETTING: Randomized controlled animal studies were performed at the Experimental Animal Center of Nanjing Medical University and Central Laboratory of Second Affiliated Hospital of Nanjing Medical University of China from September 2008 to April 2009. MATERIALS: hNSCs were harvested from brain tissue of 10 13 week old fetuses following spontaneous abortion, and hUCBSCs were collected from umbilical cord blood of full-term newborns at the Second Affiliated Hospital of Nanjing Medical University of China. hNSCs and hUCBSCs were labeled by 5-bromodeoxyuridine (BrdU) prior to transplantation. METHODS: Rat models of cerebral ischemia were established by the suture method. A total of 60 healthy male Sprague Dawley rats aged 7-9 weeks were randomly assigned to hNSC transplantation, hUCBSC transplantation and control groups. The rat models in the hNSC transplantation, hUCBSC transplantation and control groups were infused with hNSC suspension, hUCBSC suspension and saline via the caudal vein, respectively. MAIN OUTCOME MEASURES: The distribution, proliferation and differentiation of hNSCs and hUCBSCs in ischemic brain tissue were observed using immunohistochemical methods. Neurological function in rats was assessed using the neurological severity score. RESULTS: The number of BrdU-positive cells was significantly greater in the hNSC transplantation group compared with hUCBSC transplantation group at 14 days following transplantation (P 〈 0.05) The number of BrdU-positive cells reached a peak at 28 days following transplantation. Nestin-positive, glial fibrillary acidic protein-positive, cyclic nucleotide 3' phosphohydrolase-positive and neuron specific enolase-positive cells were visible following transplantation. No significant difference was determined in the constituent ratio of various cells between hNSC and hUCBSC transplantation groups (P 〉 0.05). The neurological severity score was significantly decreased in rats at 21 days following transplantation (P 〈 0.05). No significant difference was detected in neurological severity score between hNSC and hUCBSC transplantation groups at various time points (P 〉 0.05). CONCLUSION: The transplanted hNSCs and hUCBSCs can migrate into ischemic brain tissue, proliferate and differentiate into neuron-like, astrocyte-like and oligodendrocyte-like cells, and improve neurological function in rats with cerebral ischemia.
文摘BACKGROUND: Transplanted mononuclear cell (MNC) of umbilical blood can survive in central nervous system (CNS) of host through blood brain barrier, differentiate into nerve cells, migrate to damaged site and integrate morphological structure and function with nerve cells of host so as to improve deficiencies of sensatory function, motor function and cognitive function and influence on stroke sequela. OBJECTIVE: To observe the vein transplantation of human umbilical cord blood stem cells (HUCBSC) for improving neurological function, limb function and activity of daily living of patients with stroke and evaluate the reliability. DESIGN: Self-controlled study. SETTING: Department of Neurosurgery, the Second People's Hospital of Zhengzhou City; Red-crossed Blood Center of Henan Province; Department of Neurosurgery, the Fist Affiliated Hospital of Zhengzhou University. PARTICIPANTS: A total of 10 patients with stroke sequela were selected from Department of Cerebral Surgery, the Second People's Hospital of Zhengzhou City from April to December 2005. There were 9 males and 1 female aged from 35 to 75 years with the mean age of 56 years. All of them were diagnosed with CT and MRI examination and coincidence with diagnostic criteria of stroke established by the Fourth National Academic Meeting for Cerebrovascular Disease. All patients provided informed consent. METHODS: 80-140 mL umbilical blood of term birth of newborn was selected hermetically and maintained in sterile plastic bag. And then, the blood was centrifugated at the speed of 1 500 r/min for 30 minutes at 22 ℃ in order to separate MNC, i.e., HUCBSC. In addition, after final diagnosis during hospitalization, stroke patients were perfused with HUCBSC through superficial vein of back of the hand. Each patient was averagely perfused with 6 portions of HUCBSC (cellular numbers ≥ 1×108/portion) and the interval between each portion was 1-7 days with the mean interval of 4 days. MAIN OUTCOME MEASURES: ① Neurological function of stroke patients was evaluated with neurological function deficiency (NFD) before treatment and at 3 months after treatment. The scale includes consciousness, level fix function, facial paralysis, language, muscle force of upper limbs, muscle force of lower limb and step function. The total scores ranged from 0 to 45; meanwhile, the lower the scores were, the better the neurological function was. ② Motor function of injured limbs was evaluated with Fugl-Meyer Assessment (FMA), including motor function of upper limbs, motor function of lower limbs, balance ability, sensory function and motion of joint. The total scores ranged from 0 to 226; meanwhile, the higher the scores were, the better the motor function of limbs was. ③ Activities of daily living (ADL) was evaluated with Barthel Index (BI), including having meals, taking a bath, dressing oneself, putting on clothes, walking in balance and stair activity. The total scores ranged from 0 to 100; meanwhile, the higher the scores were, the stronger the ADL was. RESULTS: A total of 10 patients were involved in the final analysis. After treatment, NFD of stroke patients was (10.9±5.09) points, which was lower than that before treatment [(25.4±6.09) points, t =8.213, P < 0.01]. In addition, after treatment, FMA and BI of stroke patients were (80.9±25.00) points and (81.1±15.93) points, respectively, which were higher than those before treatment [(31.9±21.85) points, (36.2±19.41) points, t =13.024, 13.670, P < 0.01]. Immuno-suppressive drugs were not used during the whole therapeutic procedure; moreover, immunological rejection and allergic reaction were not observed during the same period. CONCLUSION: Transplanting HUCBSC through superficial vein of back of the hand is regarded as a simple and safe method for the treatment of stroke sequela.
文摘Clinical and laboratory results document psoriatic arthritis in a 56-year old patient. The symptoms did not resolve with standard treatments(nonsteroidal anti-inflammatory drugs, steroids and methotrexate). TNF-alpha inhibitors(certolizumab pegol and adalimumab) were added to the treatment regime, with some adverse effects. A trial of human umbilical cord stem cell therapy was then initiated. The stem cells were enriched and concentrated from whole cord blood, by removal of erythrocytes and centrifugation. The patient received several infusions of cord blood stem cells, through intravenous and intra-articular injections. These stem cell treatments correlated with remission of symptoms(joint pain and psoriatic plaques) and normalized serologic results for the inflammatory markers C-reactive protein and erythrocyte sedimentation rate. These improvements were noted within the first thirty days post-treatment, and were sustained for more than one year. The results of this trial suggest that cord blood stem cells may have important therapeutic value for patients with psoriatic arthritis, particularly for those who cannot tolerate standard treatments.
基金supported by a grant from Science and Technology Development Program of Jilin Province of China,No.20110492
文摘Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10^6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.
文摘Objective:The chimeric mice were prepared by microinjection of blastocyst cavity using umbilical cord blood stem cells(UCBSCs)of Enhanced Green Fluorescent Protein(EGFP)-transgenic mouse,which was expected to provide a theoretical and experimental basis for the study of in-vivo differentiation of adult stem cells.Methods:Mouse UCBSCs expressing green fluorescence was microinjected into blastocyst cavity and several blastocysts were transferred into uterus of pseudo pregnant mouse.First of all,new-born candidate chimeric mice were observed through feather color.Secondly,the genomic DNA and total RNA were extracted to analyze chimeric rate in several tissues.Finally,flow cytometry was used to detect percentage of green fluorescent cells mice in several tissues.Results:The UCBSCs expressing green fluorescent protein were successfully isolated.After flow cytometry analysis,the proportion of cells expressing green fluorescence was 80.25%.Through microinjection and embryo transfer,we got five white new-born mice and no chimeric feather color was observed.The analyses of PCR and RT-PCR were carried out to detect EGFP gene using six tissues including heart muscle,liver,lung,skin,leg muscle and adipose tissue.The results showed that the leg muscle and adipose tissue of two mice were positive and the other tissues and six tissues of the other 3 mice were all negative.The leg muscle and adipose tissue of two positive mice were digested into single-cells suspension and were carried out flow cytometry analysis.The results showed that the average chimeric rates of leg muscle and adipose tissue of two positive mice were 9.87% and 5.78%,respectively.Conclusions:The results demonstrated that adult UCBSCs could differentiate into leg muscle and adipose tissue in vivo.
文摘Umbilical cord blood is the blood found in the vessels of the umbilical cord and placenta. It has been shown that this blood contains at least three populations of stem cells, each with unique features and properties. Due to the absence of standardized criteria for characterizing and naming cord blood stem cells, different terms and acronyms have been introduced to describe certain cell populations. Besides the confusion caused by the introduction of these different names, some of the terms used by different groups are inaccurate and misleading when considering the molecular and cellular properties of such cells. Hence, in this review we provide simple and direct descriptions of different populations of stem cells in umbilical cord blood in an attempt to clarify the confusion caused by the existence of multiple names given to certain cord blood stem cells. We also discuss the potential use of umbilical cord blood stem cells as a therapeutic tool for several diseases and disorders in light of ongoing clinical trials.
文摘CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities) is an autosomal dominant disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the CHD7 gene are the major cause of CHARGE syndrome. Here, we present a family who sought genetic counseling because of a newborn with dysmorphic features suggesting CHARGE syndrome. The baby died three months later. Afterwards, a molecular genetic testing for sequence analysis of the CHD7 coding region was performed with DNA extracted from umbilical cord blood stem cells confirming the diagnosis of CHARGE syndrome. Although the diagnosis is first suspected clinically, in the newborn case presented here, we illustrate the importance of the molecular testing to confirm the diagnosis, and to enable precise genetic counseling. Also, even though cord blood has been stored in private banks for more than ten years, there is as yet no routine clinical application of autologous (self-donation) hematopoietic stem cells from cord blood. Now, we illustrate for the first time the usefulness of umbilical cord blood stem cells for diagnosis and genetic counseling in a case that involve a dead propositus.
基金the Korea Health R&D Project Granted by Ministry of Health and Welfare Republic of Korea, No. A080863
文摘BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells. OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1×10^6 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis. RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P 〈 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P 〈 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration.
基金supported by Medical Scientific Research Program of Hebei Province in 2010, Hebei Provincial Health Department, No. 20100131
文摘In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.
基金Supported by:Tackle Key Project of Chongqing Municipal Science and Technology Ministry,No. 7830
文摘BACKGROUND: Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity. OBJECTIVE: To investigate isolation and in vitro cultivation methods of human cord blood MSCs, to observe expression of neural stem cell (NSC) marker mRNA under induction, and to detect tumorigenicity in animals. DESIGN, TIME AND SETTING: A cell biological, in vitro trial and a randomized, controlled, in vivo experiment were performed at the Department of Neurology, Daping Hospital at the Third Military Medical University of Chinese PLA from August 2006 to May 2008. MATERIALS: Umbilical cord blood was collected from full-term-delivery fetus at the Department of Gynecology and Obstetrics of Daping Hospital, China. Eighteen BALB/C nu/nu nude mice were randomly assigned to three groups: back subcutaneous, cervical subcutaneous, and control, with 6 mice in each group. METHODS: Monocytes were isolated from heparinized human cord blood samples by density gradient centrifugation and then adherent cultivated in vitro to obtain MSC clones. After the cord blood MSCs were cultured for 7 days with nerve growth factor and retinoic acid to induce differentiation into NSCs, the cells (adjusted density of 1 × 10^7/mL) were prepared into cell suspension. In the back subcutaneous and cervical subcutaneous groups, nude mice were hypodermically injected with a 0.5-mL cell suspension into the back and cervical regions, respectively. In the control group, nude mice received a subcutaneous injection of 0.5 mL physiological saline into the back or cervical regions, respectively. MAIN OUTCOME MEASURES: Cellular morphology was observed by inverted microscopy, cultured cord blood MSCs were examined by flow cytometry, expression of nestin and musashi-1 mRNA was detected by reverse-transcriptase polymerase chain reaction prior to and after induction, and tumorigenicity following cord blood MSC transplantation was assayed by hematoxylin-eosin staining. RESULTS: Following adherent cultivation, the majority of cord blood monocytes became rhombic and strongly expressed CD29, but not CD34, CD1 la, or CD11 b. These results supported previously known characteristics of cord blood MSCs. Following differentiation induction, nestin and musashi-1 were expressed on the surface of NSCs, exhibiting strongest expression at 48 hours, and subsequently reducing expression. Cultured cord blood MSCs were not tumorigenic in the nude mice. Cellular morphology displayed no malignant changes between the control and subcutaneous groups. CONCLUSION: MSCs can be isolated from human cord blood, efficiently expanded under culture conditions, differentiated into NSCs following induction, and display no tumorigenicity in nude mice.
文摘The feasibility of using cord blood mesenchymal stem/progenitor cells (CB-MSPCs) to regenerate cardiomyocytes and the optimal inducing conditions were investigated. The CB mononuclear cells were cultured in low serum DMEM medium to produce an adherent layer. After expansion, the adherent cells were added into cardiomyocyte inducing medium supplemented with 5-azacytidine. Cardiogenic specific contractile protein troponin T staining was performed to identify the cardiomy-ocyte-like cells. The results showed that the frequency of CB-MSPCs clones in CB mononuclear cells was 0. 5×10-6 and about 1. 3×107-fold expansion was achieved within 20 sub-cultivation. After car-diogenic induction, 70 % CB-MSPCs was differentiated into cardiomyocyte-like cells. It was indicated that low serum culture could expand CB-MSPCs extensively and the expanded CB-MSPCs could be induced to differentiate into cardiomyocyte-like cells in high efficiency.
基金supported by a grant of the Seoul National University Dental Hospital,Republic of Korea,No.03-2010-0020
文摘Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e
基金supported by a grant from High-Tech Research and Development Program of Jilin Province of China,No.20110492
文摘The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation and creep properties of the optic nerve change after injury.Moreover,human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal.To validate this hypothesis,a rabbit model of optic nerve injury was established using a clamp approach.At 7 days after injury,the vitreous body received a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells.At 30 days after injury,stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly,with pathological changes in the injured optic nerve also noticeably improved.These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves,and thereby contributes to nerve recovery.
基金Supported by A grant of the Korea Healthcare Technology R & D Project,Ministry of Health and Welfare,Republic of Korea,No.A110445
文摘AIM:To understand the neuroprotective mechanism of human umbilical cord blood-derived mesenchymal stem cells(hUCB-MSCs) against amyloid-β42(Aβ42) exposed rat primary neurons.METHODS:To evaluate the neuroprotective effect of hUCB-MSCs,the cells were co-cultured with Aβ42-exposed rat primary neuronal cells in a Transwell apparatus.To assess the involvement of soluble fac-tors released from hUCB-MSCs in neuroprotection,an antibody-based array using co-cultured media was conducted.The neuroprotective roles of the identified hUCB-MSC proteins was assessed by treating recombi-nant proteins or specific small interfering RNAs(siRNAs) for each candidate protein in a co-culture system.RESULTS:The hUCB-MSCs secreted elevated levels ofdecorin and progranulin when co-cultured with rat pri-mary neuronal cells exposed to Aβ42.Treatment with recombinant decorin and progranulin protected from Aβ42-neurotoxicity in vitro.In addition,siRNA-mediat-ed knock-down of decorin and progranulin production in hUCB-MSCs reduced the anti-apoptotic effects of hUCB-MSC in the co-culture system.CONCLUSION:Decorin and progranulin may be involved in anti-apoptotic activity of hUCB-MSCs exposed to Aβ42.
基金the National Natural Science Foundation of China, No. 3067104130870642
文摘BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments.
文摘Previous in vivo experiments have shown that human umbilical cord blood mesenchymal stem cells can promote the proliferation and differentiation of damaged celts, and help to repair damaged sites, Recent studies have reported that umbilical cord blood-derived mesenchymal stem cells can differentiate into neurons and glial cells. Recent studies have reported that the repair mechanisms underlying cord blood stern cells involve the replacement of damaged cells and mediation of the local micro-environment.
基金supported by the National Natural Science Foundation of China,No.81273775
文摘OBJECTIVE: The aim of this study was to evaluate the effectiveness and safety of stem cell transplantation for spinal cord injury(SCI).DATA SOURCES: PubM ed, EMBASE, Cochrane, China National Knowledge Infrastructure, China Science and Technology Journal, Wanfang, and Sino Med databases were systematically searched by computer to select clinical randomized controlled trials using stem cell transplantation to treat SCI, published between each database initiation and July 2016. DATA SELECTION: Randomized controlled trials comparing stem cell transplantation with rehabilitation treatment for patients with SCI. Inclusion criteria:(1) Patients with SCI diagnosed according to the American Spinal Injury Association(ASIA) International standards for neurological classification of SCI;(2) patients with SCI who received only stem cell transplantation therapy or stem cell transplantation combined with rehabilitation therapy;(3) one or more of the following outcomes reported: outcomes concerning neurological function including sensory function and locomotor function, activities of daily living, urination functions, and severity of SCI or adverse effects. Studies comprising patients with complications, without full-text, and preclinical animal models were excluded. Quality of the included studies was evaluated using the Cochrane risk of bias assessment tool and Rev Man V5.3 software, provided by the Cochrane Collaboration, was used to perform statistical analysis. OUTCOME MEASURES: ASIA motor score, ASIA light touch score, ASIA pinprick score, ASIA impairment scale grading improvement rate, activities of daily living score, residual urine volume, and adverse events.RESULTS: Ten studies comprising 377 patients were included in the analysis and the overall risk of bias was relatively low level. Four studies did not detail how random sequences were generated, two studies did not clearly state the blinding outcome assessment, two studies lacked blinding outcome assessment, one study lacked follow-up information, and four studies carried out selective reporting. Compared with rehabilitation therapy, stem cell transplantation significantly increased the lower limb light touch score(odds ratio(OR) = 3.43, 95% confidence interval(CI): 0.01 – 6.86, P = 0.05), lower limb pinprick score(OR = 3.93, 95%CI: 0.74 – 7.12, P = 0.02), ASI grading rate(relative risk(RR) = 2.95, 95%CI: 1.64 – 5.29, P = 0.0003), and notably reduced residual urine volume(OR = –8.10, 95%CI: –15.09 to –1.10, P = 0.02). However, stem cell transplantation did not significantly improve motor score(OR = 1.89, 95%CI: –0.25 to 4.03, P = 0.08) or activities of daily living score(OR = 1.12, 95%CI: –1.17 to 4.04, P = 0.45). Furthermore, stem cell transplantation caused a high rate of mild adverse effects(RR = 14.49, 95%CI: 5.34 – 34.08, P 〈 0.00001); however, these were alleviated in a short time. CONCLUSION: Stem cell transplantation was determined to be an efficient and safe treatment for SCI and simultaneously improved sensory and bladder functions. Although associated minor and temporary adverse effects were observed with transplanted stem cells, spinal cord repair and axon remyelination were apparent. More randomized controlled trials with larger sample sizes and longer follow-up times are needed to further validate the effectiveness of stem cell transplantation in the treatment of SCI.
基金funded by the National High Technology Research and Development Program of China ("863" Program,No.2012AA020905)the National Natural Science Foundation of China (No.81360194)the National Basic Research Program of China (973 program,No.2014CB542200)
文摘Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduits injected with human umbilical cord stem cells could be an effective method to solve such problems,but studies focused on the best type of Y-tube conduit remain controversial.Therefore,the present study evaluated the applicability and efficacy of various types of Y-tube conduits containing human umbilical cord stem cells for treating rat femoral nerve defects on their bifurcation points.At 12 weeks after the bridging surgery that included treatment with different types of Y-tube conduits,there were no differences in quadriceps femoris muscle weight or femoral nerve ultrastructure.However,the Y-tube conduit group with longer branches and a short trunk resulted in a better outcome according to retrograde labeling and electrophysiological analysis.It can be concluded from the study that repairing a mixed nerve defect at its bifurcation point with Y-tube conduits,in particular those with long branches and a short trunk,is effective and results in good outcomes.