Tracking load changes in a pressurized water reactor(PWR)with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable c...Tracking load changes in a pressurized water reactor(PWR)with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable core power according to the reference value within an acceptable tolerance for the safety of PWR.To overcome the uncertainties,a non-integer-based fractional order control method is demonstrated to control the core power of PWR.The available dynamic model of the reactor core is used in this analysis.Core power is controlled using a modified state feedback approach with a non-integer integral scheme through two different approximations,CRONE(Commande Robuste d’Ordre Non Entier,meaning Non-integer orderRobust Control)and FOMCON(non-integer order modeling and control).Simulation results are produced using MATLAB■program.Both non-integer results are compared with an integer order PI(Proportional Integral)algorithm to justify the effectiveness of the proposed scheme.Sate-spacemodel Core power control Non-integer control Pressurized water reactor PI controller CRONE FOMCON.展开更多
This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the...This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.展开更多
Core axial power distribution is an essential topic in pressurized water reactor(PWR)reactivity control.Traditional PWRs limit stability against axial core power oscillations at a high-cycle burnup.Because the‘‘came...Core axial power distribution is an essential topic in pressurized water reactor(PWR)reactivity control.Traditional PWRs limit stability against axial core power oscillations at a high-cycle burnup.Because the‘‘camel’’peak power shape typically occurs with increasing depletion,the approaches used for the axial power control deserve special attention.This study aims to investigate the performance of different gadolinium rod design schemes in core axial power control during power operation based on the reactivity balance strategy,and to propose new multiconcentration gadolinium rod design schemes.In the new design schemes,low-concentration gadolinium pellets are filled in the axial hump part of the gadolinium rod,and high-concentration gadolinium pellets are filled in the other parts.The impact of different gadolinium rod design schemes on the main core characteristics was evaluated using the nuclear design code package PCM developed by CGN.The results show that the new gadolinium rod design significantly impacts the core axial power shape.The new design schemes can efficiently improve the core axial power distribution along the entire cycle by reducing the core axial power peak at the end of a cycle,enhancing the reactor operation stability,and achieving a better core safety margin,revealing a sizeable potential application.展开更多
The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. ...The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.展开更多
Power uprates pose a threat to electrical generators due to possible parasite effects that can develop potential failure sources with catastrophic consequences in most cases. In that sense, it is important to pay clos...Power uprates pose a threat to electrical generators due to possible parasite effects that can develop potential failure sources with catastrophic consequences in most cases. In that sense, it is important to pay close attention to overheating, which results from excessive system losses and cooling system inefficiency. The end region of a stator is the most sensitive part to overheating. The calculation of magnetic fields, the evaluation of eddy-current losses and the determination of loss-derived temperature increases, are challenging problems requiring the use of simulation methods. The most usual methodology is the finite element method, or linear regression. In order to address this methodology, a calculation method was developed to determine temperature increases in the last stator package. The mathematical model developed was based on an artificial intelligence technique, more specifically neural networks. The model was successfully applied to estimate temperatures associated to 108% power and used to extrapolate temperature values for a power uprate to 113.48%. This last scenario was also useful to test extrapolation accuracy. The method is applied to determine core-end temperature when power is uprated to 117.78%. At that point, the temperature value will be compared to with the values obtained using finite elements method and multivariate regression.展开更多
This Paper studies the effect of new suggested ferroresonance limiter on controlling ferroresonance oscillations in the power transformer. It is expected that this limiter generally can control the ferroresonance. For...This Paper studies the effect of new suggested ferroresonance limiter on controlling ferroresonance oscillations in the power transformer. It is expected that this limiter generally can control the ferroresonance. For studying these phenomena, at first ferroresonance is introduced and a general modeling approach is given. A simple case of ferroresonance in a three phase transformer is used to illustrate these phenomena. Then, effect of new suggested ferroresonance limiter on the onset of chaotic ferroresonance and control of these oscillations in a power transformer including linear core losses is studied. Simulation is done on a three phase power transformer while one of its phases is opened, and effect of varying input voltage on occurring ferroresonance overvoltage is studied. Results show that connecting the ferroresonance limiter to the transformer exhibits a great controlling effect on the ferroresonance overvoltage. Phase plane diagram, FFT analysis along with bifurcation diagrams are also presented. Significant effect on occurring chaotic ferroresonance, the range of parameter values that may lead to overvoltage and magnitude of ferroresonance overvoltage is obtained, showed and tabulated.展开更多
小型棒控压水堆舍弃了可溶硼,并高度依赖控制棒与可燃毒物棒控制堆芯的反应性。为研究控制棒对堆芯关键性能的影响,本文以核动力破冰船用KLT-40模型为对象,以轴向功率偏移、堆芯寿期、燃料利用率与径向功率峰因子为指标,开展长寿期小型...小型棒控压水堆舍弃了可溶硼,并高度依赖控制棒与可燃毒物棒控制堆芯的反应性。为研究控制棒对堆芯关键性能的影响,本文以核动力破冰船用KLT-40模型为对象,以轴向功率偏移、堆芯寿期、燃料利用率与径向功率峰因子为指标,开展长寿期小型棒控压水堆控制棒布置与动作策略设计分析。首先,基于OpenMC程序开发带棒燃耗程序;其次,比较堆芯带控制棒与无控制棒运行时的堆芯寿期等指标;最后,分析不同动作策略对轴向功率偏移等指标的影响。结果表明:控制棒将堆芯寿期从590 EFPDs(等效满功率天,Effective full power days)延长至650~698 EFPDs;低价值棒组优先动作策略使轴向功率偏移程度由−0.69与+0.80分别下降至−0.29与+0.52。因此,要准确计算长寿期压水堆寿期必须采用带控制棒燃耗计算策略,并且通过合理的动作策略能够有效减小控制棒带来的轴向功率偏移。展开更多
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia under grant no.(KEP-Msc-36-135-38).
文摘Tracking load changes in a pressurized water reactor(PWR)with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable core power according to the reference value within an acceptable tolerance for the safety of PWR.To overcome the uncertainties,a non-integer-based fractional order control method is demonstrated to control the core power of PWR.The available dynamic model of the reactor core is used in this analysis.Core power is controlled using a modified state feedback approach with a non-integer integral scheme through two different approximations,CRONE(Commande Robuste d’Ordre Non Entier,meaning Non-integer orderRobust Control)and FOMCON(non-integer order modeling and control).Simulation results are produced using MATLAB■program.Both non-integer results are compared with an integer order PI(Proportional Integral)algorithm to justify the effectiveness of the proposed scheme.Sate-spacemodel Core power control Non-integer control Pressurized water reactor PI controller CRONE FOMCON.
文摘This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.
文摘Core axial power distribution is an essential topic in pressurized water reactor(PWR)reactivity control.Traditional PWRs limit stability against axial core power oscillations at a high-cycle burnup.Because the‘‘camel’’peak power shape typically occurs with increasing depletion,the approaches used for the axial power control deserve special attention.This study aims to investigate the performance of different gadolinium rod design schemes in core axial power control during power operation based on the reactivity balance strategy,and to propose new multiconcentration gadolinium rod design schemes.In the new design schemes,low-concentration gadolinium pellets are filled in the axial hump part of the gadolinium rod,and high-concentration gadolinium pellets are filled in the other parts.The impact of different gadolinium rod design schemes on the main core characteristics was evaluated using the nuclear design code package PCM developed by CGN.The results show that the new gadolinium rod design significantly impacts the core axial power shape.The new design schemes can efficiently improve the core axial power distribution along the entire cycle by reducing the core axial power peak at the end of a cycle,enhancing the reactor operation stability,and achieving a better core safety margin,revealing a sizeable potential application.
基金supported by the National Natural Science Foundation of China (10972115)
文摘The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.
文摘Power uprates pose a threat to electrical generators due to possible parasite effects that can develop potential failure sources with catastrophic consequences in most cases. In that sense, it is important to pay close attention to overheating, which results from excessive system losses and cooling system inefficiency. The end region of a stator is the most sensitive part to overheating. The calculation of magnetic fields, the evaluation of eddy-current losses and the determination of loss-derived temperature increases, are challenging problems requiring the use of simulation methods. The most usual methodology is the finite element method, or linear regression. In order to address this methodology, a calculation method was developed to determine temperature increases in the last stator package. The mathematical model developed was based on an artificial intelligence technique, more specifically neural networks. The model was successfully applied to estimate temperatures associated to 108% power and used to extrapolate temperature values for a power uprate to 113.48%. This last scenario was also useful to test extrapolation accuracy. The method is applied to determine core-end temperature when power is uprated to 117.78%. At that point, the temperature value will be compared to with the values obtained using finite elements method and multivariate regression.
文摘This Paper studies the effect of new suggested ferroresonance limiter on controlling ferroresonance oscillations in the power transformer. It is expected that this limiter generally can control the ferroresonance. For studying these phenomena, at first ferroresonance is introduced and a general modeling approach is given. A simple case of ferroresonance in a three phase transformer is used to illustrate these phenomena. Then, effect of new suggested ferroresonance limiter on the onset of chaotic ferroresonance and control of these oscillations in a power transformer including linear core losses is studied. Simulation is done on a three phase power transformer while one of its phases is opened, and effect of varying input voltage on occurring ferroresonance overvoltage is studied. Results show that connecting the ferroresonance limiter to the transformer exhibits a great controlling effect on the ferroresonance overvoltage. Phase plane diagram, FFT analysis along with bifurcation diagrams are also presented. Significant effect on occurring chaotic ferroresonance, the range of parameter values that may lead to overvoltage and magnitude of ferroresonance overvoltage is obtained, showed and tabulated.
文摘小型棒控压水堆舍弃了可溶硼,并高度依赖控制棒与可燃毒物棒控制堆芯的反应性。为研究控制棒对堆芯关键性能的影响,本文以核动力破冰船用KLT-40模型为对象,以轴向功率偏移、堆芯寿期、燃料利用率与径向功率峰因子为指标,开展长寿期小型棒控压水堆控制棒布置与动作策略设计分析。首先,基于OpenMC程序开发带棒燃耗程序;其次,比较堆芯带控制棒与无控制棒运行时的堆芯寿期等指标;最后,分析不同动作策略对轴向功率偏移等指标的影响。结果表明:控制棒将堆芯寿期从590 EFPDs(等效满功率天,Effective full power days)延长至650~698 EFPDs;低价值棒组优先动作策略使轴向功率偏移程度由−0.69与+0.80分别下降至−0.29与+0.52。因此,要准确计算长寿期压水堆寿期必须采用带控制棒燃耗计算策略,并且通过合理的动作策略能够有效减小控制棒带来的轴向功率偏移。