期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Solar energetic particles intensity variations associated with a tilted-dipole 3D corotating interaction region
1
作者 YuJi Zhu Fang Shen +2 位作者 Xi Luo Yang Wang BoFeng Tang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第5期797-810,共14页
The effect of a tilted-dipole three-dimensional corotating interaction region(CIR)on the transport and acceleration of solar energetic particles(SEPs)is studied.In this work,we discussed how the particle intensity lon... The effect of a tilted-dipole three-dimensional corotating interaction region(CIR)on the transport and acceleration of solar energetic particles(SEPs)is studied.In this work,we discussed how the particle intensity longitudinal and radial dependence might be influenced by the background structures.Moreover,we investigate how the spectral index distribution is modulated by the CIR structure We use the focused transport equation(FTE)to describe the propagation and acceleration of SEPs in a tilt-dipole 3D CIR,generated by the high-resolution 3D magnetohydrodynamic(MHD)model.The forward stochastic differential method is used to solve the FTE.The protons with theE~(-4.4)spectrum from 0.5 to 15 MeV are injected uniformly at the heliographic equator of 0.15 AU.Physical quantities are extracted along each interplanetary magnetic field(IMF)line to show the results.In the tilted-dipole CIR background,if injected from the solar equator at the inner boundary,particles in the slow flow are transported to higher latitudes due to the extension of the IMF lines to higher latitudes.The longitudinal patterns of the particles are dominated by the density of IMF lines.The focusing effect modulates the longitudinal variation of the particle intensity and gives rise to new longitudinal intensity peaks.The adiabatic effect largely increases the intensity fluctuation along the longitude.The structure of the solar wind can also lead to the difference of the indexαin the empirical functionI_(max)=kR~(-α),describing the radial variation of peak intensity according to our simulation.Under the influence of the CIR structure,the indexαvaries from 1.9 to 3.4 at 0.3-1.0 AU.The variation of the solar wind speed should be considered when estimating the radial dependence of the SEP peak intensity.The spectra indices rise near the CIR boundaries and drop near the stream interface(SI).The adiabatic effect makes the spatial variability of the spectral index larger.The spectral index could be similar at different radial distances in the CIR structure. 展开更多
关键词 solar energetic particle(SEP) corotating interaction regions(CIR) magnetohydrodynamic(MHD)
下载PDF
Distribution of O^(+)and O_(2)^(+) fluxes and their escape rates in the near-Mars magnetotail:A survey of MAVEN observations
2
作者 HengLe Du Xing Cao +5 位作者 BinBin Ni Song Fu Xin Ma XiaoTong Yun MinYi Long Qiong Luo 《Earth and Planetary Physics》 EI CSCD 2022年第6期536-545,共10页
Tailward ion outflows in the Martian-induced magnetotail are known to be one of the major channels for Martian atmospheric escape.On the basis of nearly 6.5 years of observations from the Mars Atmosphere and Volatile ... Tailward ion outflows in the Martian-induced magnetotail are known to be one of the major channels for Martian atmospheric escape.On the basis of nearly 6.5 years of observations from the Mars Atmosphere and Volatile EvolutioN(MAVEN)mission,we investigate the statistical distribution of tailward and Marsward fluxes of heavy ions(i.e.,O^(+),and O_(2)^(+))in the near-Mars magnetotail and explore their characteristic responses to the corotating interaction region(CIR),solar wind dynamic pressure,and local magnetic field intensity.Our results show that the tailward fluxes of oxygen ions and molecular oxygen ions in the magnetotail are significantly greater than their Marsward fluxes and that the tailward flux of molecular oxygen ions is generally larger than that of oxygen ions.Furthermore,the tailward ion flux distribution exhibits dependence on the CIR,solar wind dynamic pressure,and local magnetic field strength in a manner stronger than the Marsward ion flux distribution.According to the distribution of tailward ion fluxes,we calculate the corresponding escape rates of heavy ions and show that when the CIR occurs,the total escape rates of oxygen ions and molecular oxygen ions increase by a factor of~2 and~1.2,respectively.We also find that the escape rates of heavy ions increase with the enhancement of solar wind dynamic pressure,whereas the overall effect of the local magnetic field is relatively weak.Our study has important implications for improved understanding of the underlying mechanisms responsible for the Martian atmospheric escape and the evolution of the Martian atmospheric climate. 展开更多
关键词 Martian-induced magnetotail atmospheric heavy ion outflow corotating interaction region escape rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部