期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of the Probability Matching Correction Method in Precipitation Forecast
1
作者 Guo Dafeng Chen Xiangxiang 《Meteorological and Environmental Research》 CAS 2018年第3期64-71,74,共9页
Based on the observation data of 24-hour cumulative precipitation from 92 ground meteorological observation stations in Jiangxi province from March to July during 2015-2016 and the high-resolution numerical forecast d... Based on the observation data of 24-hour cumulative precipitation from 92 ground meteorological observation stations in Jiangxi province from March to July during 2015-2016 and the high-resolution numerical forecast data of precipitation predicted within 24-72 h by the European Centre for Medium-Range Weather Forecasts( ECMWF),the Gamma function was used as the fitting function of probability distribution of cumulative precipitation to match the probability of predicted and observed precipitation. Moreover,the change of forecast score before and after the correction was tested. The results showed that the predicted values of heavy precipitation based on ECMWF model were smaller than the observed values,while the predicted values of light precipitation were larger than the observed values. The probability matching correction method could be used to effectively correct systematic errors of model forecast,and the correction effect of all grades of precipitation( especially for rainstorm) was good.The shorter the period of validity was,the better the correction effect was. The correction method has a good application effect in the interpretation of model precipitation products,and can provide better security services for agricultural production. 展开更多
关键词 Probability matching Precipitation forecast correction application
下载PDF
Understanding the Relativistic Generalization of Density Functional Theory (DFT) and Completing It in Practice 被引量:1
2
作者 Diola Bagayoko 《Journal of Modern Physics》 2016年第9期911-919,共9页
In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127,104 (2014)]. This understanding includes two features that complete t... In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127,104 (2014)]. This understanding includes two features that complete the theory in practice, inasmuch as they are necessary for its correct application in electronic structure calculations;this understanding elucidates what appears to have been the crucial misunderstanding for 50 years, namely, the confusion between a stationary solution, attainable with most basis sets, following self-consistent iterations, with the ground state solution. The latter is obtained by a calculation that employs the well-defined optimal basis set for the system. The aim of this work is to review the above understanding and to extend it to the relativistic generalization of density functional theory by Rajagopal and Callaway [Phys. Rev. B7, 1912 (1973)]. This extension straightforwardly follows similar steps taken in the non-relativistic case, with the four-component current density, in the former, replacing the electronic charge density, in the latter. This new understanding, which completes relativistic DFT in practice, is expected to be needed for the study of heavy atoms and of materials (from molecules to solids) containing them—as is the case for some high temperature superconductors. 展开更多
关键词 Density Functional Theory BZW-EF Method correct applications of DFT Accurate Band Gaps Accurate DFT Predictions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部