Summary: Preoperative planning of corrective osteotomy with traditional radiography has limitations in regards to determining the ideal osteotomy location and orientation in three-dimensional femoral de- formities. T...Summary: Preoperative planning of corrective osteotomy with traditional radiography has limitations in regards to determining the ideal osteotomy location and orientation in three-dimensional femoral de- formities. Though a successful operation can be planned preoperatively, intraoperative contingencies might adhere to the procedural plan in the performance of operation. To efficiently perform a planned procedure, proposed is a design to implement three-dimensional reconstruction photography, based on computer-tomography (CT) scan. A custom-made guide was designed to navigate the osteotomy as planned, and additionally, a personalized intramedullary nail was used for fixation after osteotomy. Three-dimensional (3D) photography of deformed femur was established based on the CT dataset and transferred into 3D photography processing software for further planning. Osteotomy planes were de- signed and adjusted at deformity sites to correct the 3D deformities. The methodology of a custom-made osteotomy guide was introduced in femoral corrective osteotomy, for the first time, to navigate the op- eration as planned. After the virtual osteotomy and reduction of bone segments, the parameters of a custom-made intramedullary nail were measured for manufacturing. Findings Virtual operation in computer shows complete correction of the 3D deformity. The osteotomy guide, obtained by rapid-prototyping techniques, navigates mimicking surgery on rapid-prototyping model of the involved femur as planned. Internal fixation was achieved using the custom-made intramedullary nail. Interpreta- tion three-dimensional visualization introduces an advantage in preoperative planning for corrective os- teotomy of 3D femoral deformity, and the custom-made osteotomy guide is crucial to realize such a de- liberate plan during the actual procedures. The internal fixator, such as an intramedullary nail, can be modified or personalized for fixation in unique cases.展开更多
This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted thre...This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted three body problem (CR3BP). The relation between the Floquet multipliers and the magnitudes of Halo orbit is established, so that the suitable magnitude for the aerospace mission is chosen in terms of the stability of Halo orbit. The stable manifold is investigated from the Poincar6 mapping defined which is different from the previous researches, and six types of single-impulse transfer trajectories are attained from the geometry of the invariant manifolds. Based on one of the trajectories of indirect transfer which are ignored in the most of literatures, the stochastic control theory for imperfect information of the discrete linear stochastic system is applied to design the trajectory correction maneuver. The statistical dispersion analysis is performed by Monte-Carlo simulation,展开更多
基金supported by grants from the National Natural Science Foundation of China (No. 81141022)the General Hospital of Chinese Liberation Army (No. 10KMM09)
文摘Summary: Preoperative planning of corrective osteotomy with traditional radiography has limitations in regards to determining the ideal osteotomy location and orientation in three-dimensional femoral de- formities. Though a successful operation can be planned preoperatively, intraoperative contingencies might adhere to the procedural plan in the performance of operation. To efficiently perform a planned procedure, proposed is a design to implement three-dimensional reconstruction photography, based on computer-tomography (CT) scan. A custom-made guide was designed to navigate the osteotomy as planned, and additionally, a personalized intramedullary nail was used for fixation after osteotomy. Three-dimensional (3D) photography of deformed femur was established based on the CT dataset and transferred into 3D photography processing software for further planning. Osteotomy planes were de- signed and adjusted at deformity sites to correct the 3D deformities. The methodology of a custom-made osteotomy guide was introduced in femoral corrective osteotomy, for the first time, to navigate the op- eration as planned. After the virtual osteotomy and reduction of bone segments, the parameters of a custom-made intramedullary nail were measured for manufacturing. Findings Virtual operation in computer shows complete correction of the 3D deformity. The osteotomy guide, obtained by rapid-prototyping techniques, navigates mimicking surgery on rapid-prototyping model of the involved femur as planned. Internal fixation was achieved using the custom-made intramedullary nail. Interpreta- tion three-dimensional visualization introduces an advantage in preoperative planning for corrective os- teotomy of 3D femoral deformity, and the custom-made osteotomy guide is crucial to realize such a de- liberate plan during the actual procedures. The internal fixator, such as an intramedullary nail, can be modified or personalized for fixation in unique cases.
基金National Natural Science Foundation of China (10702003)Innovation Foundation of Beijing University of Aeronautics and Astronautics for Ph.D. Graduates
文摘This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted three body problem (CR3BP). The relation between the Floquet multipliers and the magnitudes of Halo orbit is established, so that the suitable magnitude for the aerospace mission is chosen in terms of the stability of Halo orbit. The stable manifold is investigated from the Poincar6 mapping defined which is different from the previous researches, and six types of single-impulse transfer trajectories are attained from the geometry of the invariant manifolds. Based on one of the trajectories of indirect transfer which are ignored in the most of literatures, the stochastic control theory for imperfect information of the discrete linear stochastic system is applied to design the trajectory correction maneuver. The statistical dispersion analysis is performed by Monte-Carlo simulation,