By means of a logarithm law for the velocity profile, a corrected formula of bed resistance coefficient, which involves many factors such as gradient of still water depth, variation of surface elevation, flow directio...By means of a logarithm law for the velocity profile, a corrected formula of bed resistance coefficient, which involves many factors such as gradient of still water depth, variation of surface elevation, flow direction, and so on, is derived from the 3D governing equations of tidal current by averaging over the whole water depth. Theoretical analysis and application have shown that the 2D plane tidal current numerical model would be more reasonable and could be applied to steep bottom topography when the corrected bed resistance coefficient is used, therefore the results of reproduction simulation and engineering calculation would be more scientific and reasonable.展开更多
The changing law of internal forces during the whole deformation development process was analyzed. The process was divided into five stages based on the internal force state of the beam and the assumptions of internal...The changing law of internal forces during the whole deformation development process was analyzed. The process was divided into five stages based on the internal force state of the beam and the assumptions of internal force relationship of five stages were proposed. Then, the formulas for determining the midspan deflection of the steel beam under distributed load, which was restrained both in rotational and axial directions, were obtained using restraint coefficient method and rigid-plastic mechanism, thereby the deformation development process was expressed accurately in a quantified way. Priority was given to the analysis of the process from bending to tension-bending, then the final state totally depends on tension to resist the external loads, that is the problem of catenary action of the restrained beam under distributed load. Additionally, finite element analysis was carried out with soitware ABAQUS6.7 on a restrained steel beam under distributed load with different axial and rotational restraint coefficients. The accuracy of the formulas presented was verified by the results of the behavior of the restrained beams. Finally, error analysis was conducted and some formulas were corrected according to the reasons of errors. The calculated results of corrected formulas match the FEM analysis results better, thus the accuracy of these formulas is improve .展开更多
Spherical indentations that rely on original date are analyzed with the physically correct mathematical formula and its integration that take into account the radius over depth changes upon penetration. Linear plots, ...Spherical indentations that rely on original date are analyzed with the physically correct mathematical formula and its integration that take into account the radius over depth changes upon penetration. Linear plots, phase-transition onsets, energies, and pressures are algebraically obtained for germanium, zinc-oxide and gallium-nitride. There are low pressure phase-transitions that correspond to, or are not resolved by hydrostatic anvil onset pressures. This enables the attribution of polymorph structures, by comparing with known structures from pulsed laser deposition or molecular beam epitaxy and twinning. The spherical indentation is the easiest way for the synthesis and further characterization of polymorphs, now available in pure form under diamond calotte and in contact with their corresponding less dense polymorph. The unprecedented results and new possibilities require loading curves from experimental data. These are now easily distinguished from data that are “fitted” to make them concur with widely used unphysical Johnson’s formula for spheres (“<span style="white-space:nowrap;"><em>P</em> = (4/3)<em>h</em><sup>3/2</sup><em>R</em><sup>1/2</sup><em>E</em><sup><span style="white-space:nowrap;">∗</span></sup></span>”) not taking care of the <em>R/h</em> variation. Its challenge is indispensable, because its use involves “fitting equations” for making the data concur. These faked reports (no “experimental” data) provide dangerous false moduli and theories. The fitted spherical indentation reports with radii ranging from 4 to 250 μm are identified for PDMS, GaAs, Al, Si, SiC, MgO, and Steel. The detailed analysis reveals characteristic features.展开更多
Soft computing tools in the form of combination of multiple nonlinear regression and M5′ model tree were used for estimation of overtopping rate at the vertical coastal structures. For reliable and precise estimation...Soft computing tools in the form of combination of multiple nonlinear regression and M5′ model tree were used for estimation of overtopping rate at the vertical coastal structures. For reliable and precise estimation of overtopping rate, the experimental data available in the database CLASH were used. The dimensionless overtopping rate was estimated in terms of conventional dimensionless parameters including the relative crest freeboard Rc/Hs, seabed slope tanθ, deep water wave steepness S(om), surf similarity ξ(om) and local relative water depth ht/Hs. The accuracy of the new model was compared with other existing models and also evaluated with some field measurements. The results indicated that the model presented in this paper is more accurate than other existing models. With statistical parameters, it is shown that the accuracy of predictions in the new model is better than that of other models.展开更多
基金National Natural Science Foundation of China(Grant No.49971064)
文摘By means of a logarithm law for the velocity profile, a corrected formula of bed resistance coefficient, which involves many factors such as gradient of still water depth, variation of surface elevation, flow direction, and so on, is derived from the 3D governing equations of tidal current by averaging over the whole water depth. Theoretical analysis and application have shown that the 2D plane tidal current numerical model would be more reasonable and could be applied to steep bottom topography when the corrected bed resistance coefficient is used, therefore the results of reproduction simulation and engineering calculation would be more scientific and reasonable.
基金Project(2006BAJ01B02)supported by the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period of China
文摘The changing law of internal forces during the whole deformation development process was analyzed. The process was divided into five stages based on the internal force state of the beam and the assumptions of internal force relationship of five stages were proposed. Then, the formulas for determining the midspan deflection of the steel beam under distributed load, which was restrained both in rotational and axial directions, were obtained using restraint coefficient method and rigid-plastic mechanism, thereby the deformation development process was expressed accurately in a quantified way. Priority was given to the analysis of the process from bending to tension-bending, then the final state totally depends on tension to resist the external loads, that is the problem of catenary action of the restrained beam under distributed load. Additionally, finite element analysis was carried out with soitware ABAQUS6.7 on a restrained steel beam under distributed load with different axial and rotational restraint coefficients. The accuracy of the formulas presented was verified by the results of the behavior of the restrained beams. Finally, error analysis was conducted and some formulas were corrected according to the reasons of errors. The calculated results of corrected formulas match the FEM analysis results better, thus the accuracy of these formulas is improve .
文摘Spherical indentations that rely on original date are analyzed with the physically correct mathematical formula and its integration that take into account the radius over depth changes upon penetration. Linear plots, phase-transition onsets, energies, and pressures are algebraically obtained for germanium, zinc-oxide and gallium-nitride. There are low pressure phase-transitions that correspond to, or are not resolved by hydrostatic anvil onset pressures. This enables the attribution of polymorph structures, by comparing with known structures from pulsed laser deposition or molecular beam epitaxy and twinning. The spherical indentation is the easiest way for the synthesis and further characterization of polymorphs, now available in pure form under diamond calotte and in contact with their corresponding less dense polymorph. The unprecedented results and new possibilities require loading curves from experimental data. These are now easily distinguished from data that are “fitted” to make them concur with widely used unphysical Johnson’s formula for spheres (“<span style="white-space:nowrap;"><em>P</em> = (4/3)<em>h</em><sup>3/2</sup><em>R</em><sup>1/2</sup><em>E</em><sup><span style="white-space:nowrap;">∗</span></sup></span>”) not taking care of the <em>R/h</em> variation. Its challenge is indispensable, because its use involves “fitting equations” for making the data concur. These faked reports (no “experimental” data) provide dangerous false moduli and theories. The fitted spherical indentation reports with radii ranging from 4 to 250 μm are identified for PDMS, GaAs, Al, Si, SiC, MgO, and Steel. The detailed analysis reveals characteristic features.
文摘Soft computing tools in the form of combination of multiple nonlinear regression and M5′ model tree were used for estimation of overtopping rate at the vertical coastal structures. For reliable and precise estimation of overtopping rate, the experimental data available in the database CLASH were used. The dimensionless overtopping rate was estimated in terms of conventional dimensionless parameters including the relative crest freeboard Rc/Hs, seabed slope tanθ, deep water wave steepness S(om), surf similarity ξ(om) and local relative water depth ht/Hs. The accuracy of the new model was compared with other existing models and also evaluated with some field measurements. The results indicated that the model presented in this paper is more accurate than other existing models. With statistical parameters, it is shown that the accuracy of predictions in the new model is better than that of other models.