For the activated dynamics of a Brownian particle moving in a confined system with the presence of entropic barriers, this paper investigates a periodic driving and correlations between two noises. Within the two-stat...For the activated dynamics of a Brownian particle moving in a confined system with the presence of entropic barriers, this paper investigates a periodic driving and correlations between two noises. Within the two-state approximation, the explicit expressions of the mean first passage time (MFPT) and the spectral power amplification (SPA) axe obtained, respectively. Based on the numerical computations, it is found that: (i) The MFPT as a function of the noise intensity exhibits a maximum with the positive correlations between two noises (λ〉0), this maximum for MFPT shows the characteristic of the entropic noise induced stability (ENIS) effect. The intensity A of correlations between two noises can enhance the ENIS effect. (ii) The SPA as a function of the noise intensity exhibits a double-peak by tuning the noise correlation intensity λ, i.e., the existence of a double-peak behaviour is the identifying characteristic of the double entropic stochastic resonance phenomenon.展开更多
Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.C...Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
We study the effects of correlations between quantum and pump noises on fluctuations of the laser intensity in a saturation laser model. An approximative Fokker-Planck equation and analytic expressions of the steady-s...We study the effects of correlations between quantum and pump noises on fluctuations of the laser intensity in a saturation laser model. An approximative Fokker-Planck equation and analytic expressions of the steady-state probability distribution function (SPD) of the laser system are derived. Based on the SPD, the normalized mean, the normalized variance, and the normalized skewness of the steady-state laser intensity are calculated numerically. The results indicate that (i) the correlation strength A of correlated noises always enhances the fluctuation of laser intensity; (ii) the correlation time v of correlated noises strengthens the fluctuation of laser intensity for the below-threshold case but τ weakens it for the above-threshold case.展开更多
We discuss the transport of an underdamped particle driven by an external fluctuation force in a spatially periodic asymmetric potential with correlated noises. The corresponding mathematical model is established. The...We discuss the transport of an underdamped particle driven by an external fluctuation force in a spatially periodic asymmetric potential with correlated noises. The corresponding mathematical model is established. The movement of the steady current of an underdamped particle is presented by the method of the numerical simulation. It is indicated that the value of the current may be negative, zero, or positive. The external fluctuation force and correlated noises can effect the current direction. Under the appropriate parameters, the correlated noises intensity may even raise a reversal of the current. Besides, we have noticed a phenomenon that particles with different weight have different directions during movement by the impact of the correlated noises and external fluctuation force. Therefore, the Brownian particles can be effectively separated according to their masses.展开更多
The simplified incidence function model which is driven by the colored correlated noises is employed to investigate the extinction time of a metapopulation perturbed by environments. The approximate Fokker-Planck Equa...The simplified incidence function model which is driven by the colored correlated noises is employed to investigate the extinction time of a metapopulation perturbed by environments. The approximate Fokker-Planck Equation and the mean first passage time which denotes the extinction time (Tex) are obtained by virtue of the Novikov theorem and the Fox approach. After introducing a noise intensity ratio and a dimensionless parameter R = D /α (D and a are the multiplicative and additive colored noise intensities respectively), and then performing numerical computations, the results indicate that: (i) The absolute value of correlation strength A and its correlation time τ3 play opposite roles on the Tex; (ii) For the case of 0 〈λ〈 1,α and its correlation time τ2 play opposite roles on the Tex in which R〉 1 is the best condition, and there is one-peak structure on the Tex - D plot; (iii) For the case of-1 〈 λ≤ 0, D and its correlation time τ1 play opposite roles on the Tex in which R 〈 1 is the best condition and there is one-peak structure on the Tex - τ2 plot.展开更多
The steady-state properties of a bistable system are investigated when both the multiplicative noise and the coupling between additive and multiplicative noises are coloured with different values of noise correlation ...The steady-state properties of a bistable system are investigated when both the multiplicative noise and the coupling between additive and multiplicative noises are coloured with different values of noise correlation times T1 and T2. After introducing a dimensionless parameter R(R = α/D, D is the intensity of the multiplicative noise and a is the intensity of the additive noise), and performing the numerical computations, we find the following points: (1) For the case of R 〉 1, A (the intensity of correlation between additive and multiplicative noises), T1 and T2 can induce the stationary probability distribution (SPD) transition from bimodal to unimodal in structure, but for the cases of R _〈 1, the bimodal structure is preserved; (2) a can also induce the SPD transition from bimodal to unimodal in structure; (3) the bimodal structure of the SPD exhibits a symmetrical structure as D increases.展开更多
New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated no...New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated noises. Based on the minimum mean square error estimation theory, the nonlinear optimal predictive and correction recursive formulas under the hypothesis that the input noise is correlated with the measurement noise are derived and can be described in a unified framework. Then, UKF and DDF with correlated noises are proposed on the basis of approximation of the posterior mean and covariance in the unified framework by using unscented transformation and second order Stirling's interpolation. The proposed UKF and DDF with correlated noises break through the limitation that input noise and measurement noise must be assumed to be uneorrelated in standard UKF and DDF. Two simulation examples show the effectiveness and feasibility of new algorithms for dealing with nonlinear filtering issue with correlated noises.展开更多
In the field of nonlinear filtering(NLF),it is well-known that the unnormalized conditional density of the states satisfies the Zakai’s equation.The splitting-up algorithm has been first studied in the independent no...In the field of nonlinear filtering(NLF),it is well-known that the unnormalized conditional density of the states satisfies the Zakai’s equation.The splitting-up algorithm has been first studied in the independent noises case by Bensoussan,et al.(1990).In this paper,the authors extend this convergence analysis of the splitting-up algorithm to the correlated noises’case.Given a time discretization,one splits the solution of the Zakai’s equation into two interlacing processes(with possibly computational advantage).These two processes correspond respectively to the prediction and updating.Under certain conditions,the authors show that both processes tend to the solution of the Zakai’s equation,as the time step goes to zero.The authors specify the conditions imposed on the way of splitting-up to guarantee the convergence.The major technical difficulty in the correlated noises’case,compared with the independent case,is to control the gradient of the second process in some sense.To illustrate the potentially computational advantage of the schemes based on the splitting-up ways,the authors experiment on a toy NLF model using the feedback particle filter(FPF)developed based on the splitting-up method and the sampling importance and resampling(SIR)as comparison.The FPF outperforms in both accuracy and efficiency.展开更多
This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to...This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).展开更多
The globally optimal recursive filtering problem is studied for a class of systems with random parameter matrices,stochastic nonlinearities, correlated noises and missing measurements. The stochastic nonlinearities ar...The globally optimal recursive filtering problem is studied for a class of systems with random parameter matrices,stochastic nonlinearities, correlated noises and missing measurements. The stochastic nonlinearities are presented in the system model to reflect multiplicative random disturbances, and the additive noises, process noise and measurement noise, are assumed to be one-step autocorrelated as well as two-step cross-correlated.A series of random variables is introduced as the missing rates governing the intermittent measurement losses caused by unfavorable network conditions. The aim of the addressed filtering problem is to design an optimal recursive filter for the uncertain systems based on an innovation approach such that the filtering error is globally minimized at each sampling time. A numerical simulation example is provided to illustrate the effectiveness and applicability of the proposed algorithm.展开更多
This paper investigates the two-time intensity correlation function of a two-mode ring laser system subjected to both pump and quantum noises by stochastic simulation. It finds that the decay rate of the intensity cor...This paper investigates the two-time intensity correlation function of a two-mode ring laser system subjected to both pump and quantum noises by stochastic simulation. It finds that the decay rate of the intensity correlation function of one mode gets faster with decreasing values of relevant parameters, i.e., the coupling constant ξ, the cross-correlation coefficient A, the difference of the pump parameters Aa and the pump parameter al; however, its variations get complex in the other mode when relevant parameters are changed. The investigating results also show that the effects of the mode competition on intensity correlation function are obvious.展开更多
When Kalman filter is used in the estimation of Vasicek term structure of interest rates,it is usual to assume that the measurement noise is uncorrelated.Study results are more favorable to the assumption of correlate...When Kalman filter is used in the estimation of Vasicek term structure of interest rates,it is usual to assume that the measurement noise is uncorrelated.Study results are more favorable to the assumption of correlated measurement noise.An augmented state Kalman filter form for Vasicek model is proposed to optimally estimate the unobservable state variable with the assumption of correlated measurement noise.Empirical results indicate that the model with sequentially correlated measurement noise can more accurately describe the dynamics of the term structure of interest rates.展开更多
The entropic stochastic resonance (ESR) in a confined system subjected to dichotomous noise and white noise and driven by a periodic sinusoidal force along the x axis of the structure and a time-dependent force in t...The entropic stochastic resonance (ESR) in a confined system subjected to dichotomous noise and white noise and driven by a periodic sinusoidal force along the x axis of the structure and a time-dependent force in the declining direction, is investigated. Under the adiabatic approximation condition and based on the two-state theory, the expression of the output signal-to-noise ratio (SNR) is obtained. The results show that the SNR is a non-monotonic function of the strengths of dichotomous noise, white noise, and correlated strength of correlated noise. In addition, the SNR varies non-monotonically with the increase of the shape parameters of the confined structure, and also with the increase of the constant force along the y axis of the structure. The influence of the correlation rate of the dichotomous noise, and that of the frequency of the periodic force on the SNR are discussed.展开更多
Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense codi...Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.展开更多
The key of the subspace-based Direction Of Arrival (DOA) estimation lies in the estimation of signal subspace with high quality. In the case of uncorrelated signals while the signals are temporally correlated, a novel...The key of the subspace-based Direction Of Arrival (DOA) estimation lies in the estimation of signal subspace with high quality. In the case of uncorrelated signals while the signals are temporally correlated, a novel approach for the estimation of DOA in unknown correlated noise fields is proposed in this paper. The approach is based on the biorthogonality between a matrix and its Moore-Penrose pseudo inverse, and made no assumption on the spatial covariance matrix of the noise. The approach exploits the structural information of a set of spatio-temporal correlation matrices, and it can give a robust and precise estimation of signal subspace, so a precise estimation of DOA is obtained. Its performances are confirmed by computer simulation results.展开更多
The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to anedyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary prop...The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to anedyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary properties of tumor cell population are studied. As in both cases the diffusion coefficient has zero point in real number field, some special features of the system are arisen. It is found that in cause tumor cell extinction. In the perfectly anti-correlated tumor cell population exhibit two extrema. both cases, the increase of the multiplicative noise intensity case, the stationary probability distribution as a function of展开更多
The phenomenon of stochastic synchronization in globally coupled FitzHugh–Nagumo(FHN) neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation(DMA...The phenomenon of stochastic synchronization in globally coupled FitzHugh–Nagumo(FHN) neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation(DMA) and direct simulation(DS). Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.展开更多
An inhomogeneously broadened two-mode laser system with cross-correlations between the real and imag- inary parts of quantum noise is considered. The Fokker-Planek equation of the system is derived by the phase-lockin...An inhomogeneously broadened two-mode laser system with cross-correlations between the real and imag- inary parts of quantum noise is considered. The Fokker-Planek equation of the system is derived by the phase-locking method. The steady-state probability distribution, the mean light intensity, the normalization autocorrelation function, and cross correlation function are calculated. The results indicate that: (i) The cross-correlation between the real and imaginary parts of quantum noise can cause the stationary probability distribution from one peak structure to two extrema structure when the laser system is operated above threshold; (ii) The cross-correlation between the real and imaginary parts of quantum noise enhance the light intensity fluctuation and decrease the laser output when the laser system is operated below or near threshold; (iii) The effect of the cross-correlation between the real and imaginary parts of quantum noise is very weak on the stationary properties when the laser system is operated far above threshold.展开更多
This paper studies the effects of cross-correlations between the real and imaginary parts of quantum noise on the laser intensity in a saturation laser model. It derives the analytic expressions of the intensity corre...This paper studies the effects of cross-correlations between the real and imaginary parts of quantum noise on the laser intensity in a saturation laser model. It derives the analytic expressions of the intensity correlation function C(τ) and the associated relaxation time T(C) in the case of a stable locked phase resulting from the cross-correlation λq between the real and imaginary parts of quantum noise. Based on numerical computations it finds that the presence of cross correlations between the real and imaginary parts of quantum noise slow down the decay of intensity fluctuation, i.e., it causes the increase of intensity fluctuation.展开更多
Over the past two decades,the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures.In addition,ambient noise-based monitoring has emerged because of the f...Over the past two decades,the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures.In addition,ambient noise-based monitoring has emerged because of the feasibility of reconstructing the continuous Green’s functions.Investigating the physical properties of a subsurface medium by tracking changes in seismic wave velocity that do not depend on the occurrence of earthquakes or the continuity of artificial sources dramatically increases the possibility of researching the evolution of crustal deformation.In this article,we outline some state-of-the-art techniques for noise-based monitoring,including moving-window cross-spectral analysis,the stretching method,dynamic time wrapping,wavelet cross-spectrum analysis,and a combination of these measurement methods,with either a Bayesian least-squares inversion or the Bayesian Markov chain Monte Carlo method.We briefly state the principles underlying the different methods and their pros and cons.By elaborating on some typical noisebased monitoring applications,we show how this technique can be widely applied in different scenarios and adapted to multiples scales.We list classical applications,such as following earthquake-related co-and postseismic velocity changes,forecasting volcanic eruptions,and tracking external environmental forcing-generated transient changes.By monitoring cases having different targets at different scales,we point out the applicability of this technology for disaster prediction and early warning of small-scale reservoirs,landslides,and so forth.Finally,we conclude with some possible developments of noise-based monitoring at present and summarize some prospective research directions.To improve the temporal and spatial resolution of passive-source noise monitoring,we propose integrating different methods and seismic sources.Further interdisciplinary collaboration is indispensable for comprehensively interpreting the observed changes.展开更多
基金Project supported by Natural Science Foundation of Yunnan Province of China (Grant No. 2010CD031)the National Natural Science Foundation of China (Grant Nos. 50906035,90610035,51066002,and U0937604)
文摘For the activated dynamics of a Brownian particle moving in a confined system with the presence of entropic barriers, this paper investigates a periodic driving and correlations between two noises. Within the two-state approximation, the explicit expressions of the mean first passage time (MFPT) and the spectral power amplification (SPA) axe obtained, respectively. Based on the numerical computations, it is found that: (i) The MFPT as a function of the noise intensity exhibits a maximum with the positive correlations between two noises (λ〉0), this maximum for MFPT shows the characteristic of the entropic noise induced stability (ENIS) effect. The intensity A of correlations between two noises can enhance the ENIS effect. (ii) The SPA as a function of the noise intensity exhibits a double-peak by tuning the noise correlation intensity λ, i.e., the existence of a double-peak behaviour is the identifying characteristic of the double entropic stochastic resonance phenomenon.
基金Supported by the National Natural Science Foundation of China(No.61300214)the National Natural Science Foundation of Henan Province(No.132300410148)+1 种基金the Post-doctoral Science Foundation of China(No.2014M551999)the Funding Scheme of Young Key Teacher ofHenan Province Universities(No.2013GGJS-026)
文摘Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant No 10363001) and the Natural Science Foundation of Yunnan province (Grant No 2005A0002M).
文摘We study the effects of correlations between quantum and pump noises on fluctuations of the laser intensity in a saturation laser model. An approximative Fokker-Planck equation and analytic expressions of the steady-state probability distribution function (SPD) of the laser system are derived. Based on the SPD, the normalized mean, the normalized variance, and the normalized skewness of the steady-state laser intensity are calculated numerically. The results indicate that (i) the correlation strength A of correlated noises always enhances the fluctuation of laser intensity; (ii) the correlation time v of correlated noises strengthens the fluctuation of laser intensity for the below-threshold case but τ weakens it for the above-threshold case.
基金Projected supported by the National Natural Science Foundation of China(Grant No.11202120)the Fundamental Research Funds for the Central Universities of China(Grant Nos.GK201502007 and GK201701001)
文摘We discuss the transport of an underdamped particle driven by an external fluctuation force in a spatially periodic asymmetric potential with correlated noises. The corresponding mathematical model is established. The movement of the steady current of an underdamped particle is presented by the method of the numerical simulation. It is indicated that the value of the current may be negative, zero, or positive. The external fluctuation force and correlated noises can effect the current direction. Under the appropriate parameters, the correlated noises intensity may even raise a reversal of the current. Besides, we have noticed a phenomenon that particles with different weight have different directions during movement by the impact of the correlated noises and external fluctuation force. Therefore, the Brownian particles can be effectively separated according to their masses.
文摘The simplified incidence function model which is driven by the colored correlated noises is employed to investigate the extinction time of a metapopulation perturbed by environments. The approximate Fokker-Planck Equation and the mean first passage time which denotes the extinction time (Tex) are obtained by virtue of the Novikov theorem and the Fox approach. After introducing a noise intensity ratio and a dimensionless parameter R = D /α (D and a are the multiplicative and additive colored noise intensities respectively), and then performing numerical computations, the results indicate that: (i) The absolute value of correlation strength A and its correlation time τ3 play opposite roles on the Tex; (ii) For the case of 0 〈λ〈 1,α and its correlation time τ2 play opposite roles on the Tex in which R〉 1 is the best condition, and there is one-peak structure on the Tex - D plot; (iii) For the case of-1 〈 λ≤ 0, D and its correlation time τ1 play opposite roles on the Tex in which R 〈 1 is the best condition and there is one-peak structure on the Tex - τ2 plot.
基金Project supported by the National Nature Science Foundation of China (Grant No 10363001) and the project of Baoji University of Sciences and Arts of China (Grant No ZK2508).
文摘The steady-state properties of a bistable system are investigated when both the multiplicative noise and the coupling between additive and multiplicative noises are coloured with different values of noise correlation times T1 and T2. After introducing a dimensionless parameter R(R = α/D, D is the intensity of the multiplicative noise and a is the intensity of the additive noise), and performing the numerical computations, we find the following points: (1) For the case of R 〉 1, A (the intensity of correlation between additive and multiplicative noises), T1 and T2 can induce the stationary probability distribution (SPD) transition from bimodal to unimodal in structure, but for the cases of R _〈 1, the bimodal structure is preserved; (2) a can also induce the SPD transition from bimodal to unimodal in structure; (3) the bimodal structure of the SPD exhibits a symmetrical structure as D increases.
基金Projects(61135001, 61075029, 61074155) supported by the National Natural Science Foundation of ChinaProject(20110491690) supported by the Postdocteral Science Foundation of China
文摘New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated noises. Based on the minimum mean square error estimation theory, the nonlinear optimal predictive and correction recursive formulas under the hypothesis that the input noise is correlated with the measurement noise are derived and can be described in a unified framework. Then, UKF and DDF with correlated noises are proposed on the basis of approximation of the posterior mean and covariance in the unified framework by using unscented transformation and second order Stirling's interpolation. The proposed UKF and DDF with correlated noises break through the limitation that input noise and measurement noise must be assumed to be uneorrelated in standard UKF and DDF. Two simulation examples show the effectiveness and feasibility of new algorithms for dealing with nonlinear filtering issue with correlated noises.
基金financially supported by the National Key R&D Program of China under Grant No.2022YFA1005103National Natural Science Foundation of China under Grant Nos. 12271019, 11871003,12201376, 11961141005the Fundamental Research Funds for the Central Universities under Grant Nos.GK202103002, YWF-22-L-640
文摘In the field of nonlinear filtering(NLF),it is well-known that the unnormalized conditional density of the states satisfies the Zakai’s equation.The splitting-up algorithm has been first studied in the independent noises case by Bensoussan,et al.(1990).In this paper,the authors extend this convergence analysis of the splitting-up algorithm to the correlated noises’case.Given a time discretization,one splits the solution of the Zakai’s equation into two interlacing processes(with possibly computational advantage).These two processes correspond respectively to the prediction and updating.Under certain conditions,the authors show that both processes tend to the solution of the Zakai’s equation,as the time step goes to zero.The authors specify the conditions imposed on the way of splitting-up to guarantee the convergence.The major technical difficulty in the correlated noises’case,compared with the independent case,is to control the gradient of the second process in some sense.To illustrate the potentially computational advantage of the schemes based on the splitting-up ways,the authors experiment on a toy NLF model using the feedback particle filter(FPF)developed based on the splitting-up method and the sampling importance and resampling(SIR)as comparison.The FPF outperforms in both accuracy and efficiency.
基金supported by Beijing Natural Science Foundation (L202003)。
文摘This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).
基金supported by the National Natural Science Foundation of China(61233005)the National Basic Research Program of China(973 Program)(2014CB744200)
文摘The globally optimal recursive filtering problem is studied for a class of systems with random parameter matrices,stochastic nonlinearities, correlated noises and missing measurements. The stochastic nonlinearities are presented in the system model to reflect multiplicative random disturbances, and the additive noises, process noise and measurement noise, are assumed to be one-step autocorrelated as well as two-step cross-correlated.A series of random variables is introduced as the missing rates governing the intermittent measurement losses caused by unfavorable network conditions. The aim of the addressed filtering problem is to design an optimal recursive filter for the uncertain systems based on an innovation approach such that the filtering error is globally minimized at each sampling time. A numerical simulation example is provided to illustrate the effectiveness and applicability of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10865006)the Natural Science Foundation of Yunnan Province of China (Grant No. 2005A0002M)
文摘This paper investigates the two-time intensity correlation function of a two-mode ring laser system subjected to both pump and quantum noises by stochastic simulation. It finds that the decay rate of the intensity correlation function of one mode gets faster with decreasing values of relevant parameters, i.e., the coupling constant ξ, the cross-correlation coefficient A, the difference of the pump parameters Aa and the pump parameter al; however, its variations get complex in the other mode when relevant parameters are changed. The investigating results also show that the effects of the mode competition on intensity correlation function are obvious.
文摘When Kalman filter is used in the estimation of Vasicek term structure of interest rates,it is usual to assume that the measurement noise is uncorrelated.Study results are more favorable to the assumption of correlated measurement noise.An augmented state Kalman filter form for Vasicek model is proposed to optimally estimate the unobservable state variable with the assumption of correlated measurement noise.Empirical results indicate that the model with sequentially correlated measurement noise can more accurately describe the dynamics of the term structure of interest rates.
基金Project supported by the Open Fund of Key Laboratory of Education-Ministry Collaboration-Built (Southwest University of Science and Technology)-Manufacturing Process Test Technology,China (Grant No. 11zxzk08)
文摘The entropic stochastic resonance (ESR) in a confined system subjected to dichotomous noise and white noise and driven by a periodic sinusoidal force along the x axis of the structure and a time-dependent force in the declining direction, is investigated. Under the adiabatic approximation condition and based on the two-state theory, the expression of the output signal-to-noise ratio (SNR) is obtained. The results show that the SNR is a non-monotonic function of the strengths of dichotomous noise, white noise, and correlated strength of correlated noise. In addition, the SNR varies non-monotonically with the increase of the shape parameters of the confined structure, and also with the increase of the constant force along the y axis of the structure. The influence of the correlation rate of the dichotomous noise, and that of the frequency of the periodic force on the SNR are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074027).
文摘Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.
基金Supported by the National Natural Science Foundation of China(No.60372049)
文摘The key of the subspace-based Direction Of Arrival (DOA) estimation lies in the estimation of signal subspace with high quality. In the case of uncorrelated signals while the signals are temporally correlated, a novel approach for the estimation of DOA in unknown correlated noise fields is proposed in this paper. The approach is based on the biorthogonality between a matrix and its Moore-Penrose pseudo inverse, and made no assumption on the spatial covariance matrix of the noise. The approach exploits the structural information of a set of spatio-temporal correlation matrices, and it can give a robust and precise estimation of signal subspace, so a precise estimation of DOA is obtained. Its performances are confirmed by computer simulation results.
基金Supported by the National Natural Science Foundation of China under Grant No. 11045004
文摘The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to anedyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary properties of tumor cell population are studied. As in both cases the diffusion coefficient has zero point in real number field, some special features of the system are arisen. It is found that in cause tumor cell extinction. In the perfectly anti-correlated tumor cell population exhibit two extrema. both cases, the increase of the multiplicative noise intensity case, the stationary probability distribution as a function of
基金supported by the National Natural Science Foundation of China(11072182 and 11272241)
文摘The phenomenon of stochastic synchronization in globally coupled FitzHugh–Nagumo(FHN) neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation(DMA) and direct simulation(DS). Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.
基金Supported by the National Natural Science Foundation of China under Grant No.10865006
文摘An inhomogeneously broadened two-mode laser system with cross-correlations between the real and imag- inary parts of quantum noise is considered. The Fokker-Planek equation of the system is derived by the phase-locking method. The steady-state probability distribution, the mean light intensity, the normalization autocorrelation function, and cross correlation function are calculated. The results indicate that: (i) The cross-correlation between the real and imaginary parts of quantum noise can cause the stationary probability distribution from one peak structure to two extrema structure when the laser system is operated above threshold; (ii) The cross-correlation between the real and imaginary parts of quantum noise enhance the light intensity fluctuation and decrease the laser output when the laser system is operated below or near threshold; (iii) The effect of the cross-correlation between the real and imaginary parts of quantum noise is very weak on the stationary properties when the laser system is operated far above threshold.
基金Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No 2006A0002M)
文摘This paper studies the effects of cross-correlations between the real and imaginary parts of quantum noise on the laser intensity in a saturation laser model. It derives the analytic expressions of the intensity correlation function C(τ) and the associated relaxation time T(C) in the case of a stable locked phase resulting from the cross-correlation λq between the real and imaginary parts of quantum noise. Based on numerical computations it finds that the presence of cross correlations between the real and imaginary parts of quantum noise slow down the decay of intensity fluctuation, i.e., it causes the increase of intensity fluctuation.
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(grant no.XDB 41000000)the China Seismic Experiment Site,China Earthquake Administration(project code 2018CSES0101).
文摘Over the past two decades,the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures.In addition,ambient noise-based monitoring has emerged because of the feasibility of reconstructing the continuous Green’s functions.Investigating the physical properties of a subsurface medium by tracking changes in seismic wave velocity that do not depend on the occurrence of earthquakes or the continuity of artificial sources dramatically increases the possibility of researching the evolution of crustal deformation.In this article,we outline some state-of-the-art techniques for noise-based monitoring,including moving-window cross-spectral analysis,the stretching method,dynamic time wrapping,wavelet cross-spectrum analysis,and a combination of these measurement methods,with either a Bayesian least-squares inversion or the Bayesian Markov chain Monte Carlo method.We briefly state the principles underlying the different methods and their pros and cons.By elaborating on some typical noisebased monitoring applications,we show how this technique can be widely applied in different scenarios and adapted to multiples scales.We list classical applications,such as following earthquake-related co-and postseismic velocity changes,forecasting volcanic eruptions,and tracking external environmental forcing-generated transient changes.By monitoring cases having different targets at different scales,we point out the applicability of this technology for disaster prediction and early warning of small-scale reservoirs,landslides,and so forth.Finally,we conclude with some possible developments of noise-based monitoring at present and summarize some prospective research directions.To improve the temporal and spatial resolution of passive-source noise monitoring,we propose integrating different methods and seismic sources.Further interdisciplinary collaboration is indispensable for comprehensively interpreting the observed changes.