This paper shows how increased entropy values from an initially low big bang level can be measured experimentally by counting relic gravitons. Furthermore the physical mechanism of this entropy increase is explained v...This paper shows how increased entropy values from an initially low big bang level can be measured experimentally by counting relic gravitons. Furthermore the physical mechanism of this entropy increase is explained via analogies with early-universe phase transitions. The role of Ng’s revised infinite quantum statistics in the physics of gravitational wave detection is acknowledged. Ng’s infinite quantum statistics can be used to show that is a starting point to the increasing net universe cosmological entropy. Finally, in a nod to similarities with zero point energy (ZPE) analysis, it is important to note that the resulting in fact is much lower, allowing for evaluating initial graviton production as an emergent field phenomena, which may be similar to how ZPE states can be used to extract energy from a vacuum if entropy is not maximized. The rapid increase in entropy so alluded to without near sudden increases to 10<sup>88</sup> may be enough to allow successful modeling of relic graviton production for entropy in a manner similar to zero point energy (ZPE) energy extraction from a vacuum state. This entropy count is akin to quantum information models used to tell how much “information” may be stored in initial conditions, and transferred from a prior to the present展开更多
The shear viscosity bound violation in Einstein gravity for anisotropic black branes is discussed, with the aim of constraining the deviation of the shear viscosity-entropy density ratio from the shear viscosity bound...The shear viscosity bound violation in Einstein gravity for anisotropic black branes is discussed, with the aim of constraining the deviation of the shear viscosity-entropy density ratio from the shear viscosity bound using causality and thermodynamics analysis.The results show that no stringent constraints can be imposed. The diffusion bound in anisotropic plaases is also studied. Ultimately, it is concluded that shear viscosity violation always occurs in cases where the equation of motion of the metric fluctuations cannot be written in a form identical to that of the minimally coupled massless scalar fields.展开更多
文摘This paper shows how increased entropy values from an initially low big bang level can be measured experimentally by counting relic gravitons. Furthermore the physical mechanism of this entropy increase is explained via analogies with early-universe phase transitions. The role of Ng’s revised infinite quantum statistics in the physics of gravitational wave detection is acknowledged. Ng’s infinite quantum statistics can be used to show that is a starting point to the increasing net universe cosmological entropy. Finally, in a nod to similarities with zero point energy (ZPE) analysis, it is important to note that the resulting in fact is much lower, allowing for evaluating initial graviton production as an emergent field phenomena, which may be similar to how ZPE states can be used to extract energy from a vacuum if entropy is not maximized. The rapid increase in entropy so alluded to without near sudden increases to 10<sup>88</sup> may be enough to allow successful modeling of relic graviton production for entropy in a manner similar to zero point energy (ZPE) energy extraction from a vacuum state. This entropy count is akin to quantum information models used to tell how much “information” may be stored in initial conditions, and transferred from a prior to the present
基金the National Natural Science Foundation of China(Grant No.11375110)
文摘The shear viscosity bound violation in Einstein gravity for anisotropic black branes is discussed, with the aim of constraining the deviation of the shear viscosity-entropy density ratio from the shear viscosity bound using causality and thermodynamics analysis.The results show that no stringent constraints can be imposed. The diffusion bound in anisotropic plaases is also studied. Ultimately, it is concluded that shear viscosity violation always occurs in cases where the equation of motion of the metric fluctuations cannot be written in a form identical to that of the minimally coupled massless scalar fields.