In order to promote the light output powers of GaN-based light emitting diodes (LEDs), two kinds of novel corrosive liquidshave been developed in this paper to roughen the surface of the indium tin oxide (ITO) current...In order to promote the light output powers of GaN-based light emitting diodes (LEDs), two kinds of novel corrosive liquidshave been developed in this paper to roughen the surface of the indium tin oxide (ITO) current spreading layer of LEDs. As aresult, the textured transparent ITO layer greatly enhanced the external quantum efficiency of the LEDs. Provided that a wafersample was dipped in a kind of corrosive liquid developed by us for only about 60 s, the light output powers of the LEDs canbe promoted by 24.7%, compared with conventional GaN-based LEDs. It is obvious that the presented method is simple, rapidand cost-effective.展开更多
The isothermal corrosion testing, microscopic examination and the performance of Fe3Si alloy as materials of construction for bath hardware in continuous hot-dipping lines were studied. The corrosion of Fe3Si alloy in...The isothermal corrosion testing, microscopic examination and the performance of Fe3Si alloy as materials of construction for bath hardware in continuous hot-dipping lines were studied. The corrosion of Fe3Si alloy in molten zinc was controlled by attacking the grain boundaries preferentially. Aluminum reacted with iron of Fe3Si alloy firstly while the samples were immersed in molten zinc, although aluminum contents in the molten zinc were very low. The phase of reaction product was thought to be Fe2Al5. The corrosion rate of the Fe3Si alloy in molten zinc was determined to be approximately 2.9×10^-3 mm/h, therefore the liquid zinc corrosion resistance of Fe3Si alloy was very weak.展开更多
The effect of cooling liquid used for heat exchangers on the Cu alloy corrosion products has been examined using potential-time measurements under applied current condition (anodizing), potentiodynamic polarization, X...The effect of cooling liquid used for heat exchangers on the Cu alloy corrosion products has been examined using potential-time measurements under applied current condition (anodizing), potentiodynamic polarization, X-ray diffraction (XRD) and infrared spectroscopy (IR) The corrosion products formed on the Cu alloy surface during anodizing, are Cu2O, Cu2(OH)3Cl, and Cu2S. NaCl is detected in the corrosion products. The film formation depends on the applied current and the shift of potential to nobler direction indicates its formation progress.展开更多
This study investigates the impact of silicon(Si)on the corrosion resistance and post-corrosion toughness of ferrite/martensitic(F/M)steels in a liquid lead-bismuth eutectic(LBE)environment.Corrosion tests were perfor...This study investigates the impact of silicon(Si)on the corrosion resistance and post-corrosion toughness of ferrite/martensitic(F/M)steels in a liquid lead-bismuth eutectic(LBE)environment.Corrosion tests were performed on HT-9 and EP-823(1.17 wt%Si)steels at 550℃for 1000 h under oxygen-controlled conditions.The resulting oxide layer consisted of an outer magnetite layer,a spinel layer and an inner oxide zone(IOZ).A Si-rich oxide layer was identified within the spinel and IOZ layers of EP-823,which slowed the growth rate of the oxide layer,enhanced antioxidant performance,and inhibited dissolution corrosion by the LBE.Post-corrosion mechanical properties were evaluated using a small punch test.Results showed a significant reduction in HT-9's toughness within 240 h of corrosion,while EP-823 exhibited increased brittleness after 500 h due to Si-promoted carbide and Laves phase precipitation,significantly reducing its toughness.展开更多
基金supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 8251063101000007, 10151063101000009 and 9451063101002082)the Scientific & Technological Plan of Guangdong Province (Grant Nos. 2008B010200004, 2010B010600030 and 2009B011100003)+2 种基金the National Natural Science Foundation of China(Grant Nos. 61078046 and 10904042)the Key Project of Chinese Ministryof Education (Grant No. 210157)the Scientific & Technological Project of Education Department of Hubei Province (Grant No. D20101104)
文摘In order to promote the light output powers of GaN-based light emitting diodes (LEDs), two kinds of novel corrosive liquidshave been developed in this paper to roughen the surface of the indium tin oxide (ITO) current spreading layer of LEDs. As aresult, the textured transparent ITO layer greatly enhanced the external quantum efficiency of the LEDs. Provided that a wafersample was dipped in a kind of corrosive liquid developed by us for only about 60 s, the light output powers of the LEDs canbe promoted by 24.7%, compared with conventional GaN-based LEDs. It is obvious that the presented method is simple, rapidand cost-effective.
基金This work was financially supported by the National Natural Science Foundation of China (No.50274005).
文摘The isothermal corrosion testing, microscopic examination and the performance of Fe3Si alloy as materials of construction for bath hardware in continuous hot-dipping lines were studied. The corrosion of Fe3Si alloy in molten zinc was controlled by attacking the grain boundaries preferentially. Aluminum reacted with iron of Fe3Si alloy firstly while the samples were immersed in molten zinc, although aluminum contents in the molten zinc were very low. The phase of reaction product was thought to be Fe2Al5. The corrosion rate of the Fe3Si alloy in molten zinc was determined to be approximately 2.9×10^-3 mm/h, therefore the liquid zinc corrosion resistance of Fe3Si alloy was very weak.
文摘The effect of cooling liquid used for heat exchangers on the Cu alloy corrosion products has been examined using potential-time measurements under applied current condition (anodizing), potentiodynamic polarization, X-ray diffraction (XRD) and infrared spectroscopy (IR) The corrosion products formed on the Cu alloy surface during anodizing, are Cu2O, Cu2(OH)3Cl, and Cu2S. NaCl is detected in the corrosion products. The film formation depends on the applied current and the shift of potential to nobler direction indicates its formation progress.
基金supported by the National Natural Science Foundation of China(No.52301121).
文摘This study investigates the impact of silicon(Si)on the corrosion resistance and post-corrosion toughness of ferrite/martensitic(F/M)steels in a liquid lead-bismuth eutectic(LBE)environment.Corrosion tests were performed on HT-9 and EP-823(1.17 wt%Si)steels at 550℃for 1000 h under oxygen-controlled conditions.The resulting oxide layer consisted of an outer magnetite layer,a spinel layer and an inner oxide zone(IOZ).A Si-rich oxide layer was identified within the spinel and IOZ layers of EP-823,which slowed the growth rate of the oxide layer,enhanced antioxidant performance,and inhibited dissolution corrosion by the LBE.Post-corrosion mechanical properties were evaluated using a small punch test.Results showed a significant reduction in HT-9's toughness within 240 h of corrosion,while EP-823 exhibited increased brittleness after 500 h due to Si-promoted carbide and Laves phase precipitation,significantly reducing its toughness.