Three male patients were diagnosed with new cortical infarctions of the right parietal lobe on the basis of head magnetic resonance imaging; high-intensity signals indicating lesions in the right parietal lobe were no...Three male patients were diagnosed with new cortical infarctions of the right parietal lobe on the basis of head magnetic resonance imaging; high-intensity signals indicating lesions in the right parietal lobe were noted on diffusion-weighted images at admission. Two of them presented with left hand weakness, and one exhibited left upper limb weakness. Treatment for improving blood supply to the brain was administered. One patient died suddenly because of ventricular fibrillation 3 days after admission. The other two patients had increased troponin levels and abnormal electrocardiograms, and were diagnosed with acute myocardial infarction half a month after admission. When lesions exist in field 7 of the parietal cortex (resulting in paralysis of the contralateral hand), the sympathetic center of the posterior lateral nucleus of the hypothalamus demonstrates compensatory excitement, which easily causes tachyarrhythmia and sudden death. Our experimental findings indicate that close electrocardiograph monitoring and cerebral infarction treatment should be standard procedures to predict and help prevent heart disease in patients with cerebral infarction in the right parietal lobe and left upper limb weakness as the main complaint.展开更多
Isolated cortical vein thrombosis often produces a focal lesion. Because of the rapid development of collateral circulation, increased intracranial pressure has never been reported in a patient with isolated cortical ...Isolated cortical vein thrombosis often produces a focal lesion. Because of the rapid development of collateral circulation, increased intracranial pressure has never been reported in a patient with isolated cortical vein thrombosis. The diagnosis of isolated cortical vein thrombosis is based mainly on MRI, catheter digital subtraction angiography, and histological findings, but may be challenging. We report a patient who presented with intermittent seizures and left-sided limb weakness. Her symptoms gradually progressed, and she eventually developed signs of increased intracranial pressure. Imaging studies showed a space-occupying lesion in the right frontal lobe of the brain. As we could not diagnose isolated cortical vein thrombosis based on the preoperative findings, surgical excision of the lesion was performed under general anesthesia. Histological examination showed destruction of the brain parenchyma with infiltration of macrophages, proliferation of reactive astrocytes and small vessels, and foci of hemorrhage. Further examination found that a number of small vessels in both the subarachnoid space and brain parenchyma were filled with thrombus, some of which was organized. Elastic fiber staining showed that the obstructed vessels were veins. We diagnosed isolated cortical vein thrombosis with atypical clinical features.展开更多
c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions....c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions. Thus, in this study, we investigated the changes in c-Fos expression in the rat cingulate and piriform cortices after myocardial infarction. Neuronal degeneration in cingulate and piriform cortices after myocardial infarction was detected using cresyl violet staining, Neu N immunohistochemistry and Fluoro-Jade B histofluorescence staining. c-Fos-immunoreactive cells were observed in cingulate and piriform cortices at 3 days after myocardial infarction and peaked at 7 and 14 days after myocardial infarction. But they were hardly observed at 56 days after myocardial infarction. The chronological change of c-Fos expression determined by western blot analysis was basically the same as that of c-Fos immunoreactivity. These results indicate that myocardial infarction can cause the chronological change of immediate-early response gene c-Fos protein expression, which might be associated with the neural activity induced by myocardial infarction.展开更多
文摘Three male patients were diagnosed with new cortical infarctions of the right parietal lobe on the basis of head magnetic resonance imaging; high-intensity signals indicating lesions in the right parietal lobe were noted on diffusion-weighted images at admission. Two of them presented with left hand weakness, and one exhibited left upper limb weakness. Treatment for improving blood supply to the brain was administered. One patient died suddenly because of ventricular fibrillation 3 days after admission. The other two patients had increased troponin levels and abnormal electrocardiograms, and were diagnosed with acute myocardial infarction half a month after admission. When lesions exist in field 7 of the parietal cortex (resulting in paralysis of the contralateral hand), the sympathetic center of the posterior lateral nucleus of the hypothalamus demonstrates compensatory excitement, which easily causes tachyarrhythmia and sudden death. Our experimental findings indicate that close electrocardiograph monitoring and cerebral infarction treatment should be standard procedures to predict and help prevent heart disease in patients with cerebral infarction in the right parietal lobe and left upper limb weakness as the main complaint.
文摘Isolated cortical vein thrombosis often produces a focal lesion. Because of the rapid development of collateral circulation, increased intracranial pressure has never been reported in a patient with isolated cortical vein thrombosis. The diagnosis of isolated cortical vein thrombosis is based mainly on MRI, catheter digital subtraction angiography, and histological findings, but may be challenging. We report a patient who presented with intermittent seizures and left-sided limb weakness. Her symptoms gradually progressed, and she eventually developed signs of increased intracranial pressure. Imaging studies showed a space-occupying lesion in the right frontal lobe of the brain. As we could not diagnose isolated cortical vein thrombosis based on the preoperative findings, surgical excision of the lesion was performed under general anesthesia. Histological examination showed destruction of the brain parenchyma with infiltration of macrophages, proliferation of reactive astrocytes and small vessels, and foci of hemorrhage. Further examination found that a number of small vessels in both the subarachnoid space and brain parenchyma were filled with thrombus, some of which was organized. Elastic fiber staining showed that the obstructed vessels were veins. We diagnosed isolated cortical vein thrombosis with atypical clinical features.
基金supported by Hallym University Research Fund,No.01-2012-10
文摘c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions. Thus, in this study, we investigated the changes in c-Fos expression in the rat cingulate and piriform cortices after myocardial infarction. Neuronal degeneration in cingulate and piriform cortices after myocardial infarction was detected using cresyl violet staining, Neu N immunohistochemistry and Fluoro-Jade B histofluorescence staining. c-Fos-immunoreactive cells were observed in cingulate and piriform cortices at 3 days after myocardial infarction and peaked at 7 and 14 days after myocardial infarction. But they were hardly observed at 56 days after myocardial infarction. The chronological change of c-Fos expression determined by western blot analysis was basically the same as that of c-Fos immunoreactivity. These results indicate that myocardial infarction can cause the chronological change of immediate-early response gene c-Fos protein expression, which might be associated with the neural activity induced by myocardial infarction.