This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
For a continuous, increasing function ω : R^+ →R^+/{0} of finite exponential type, this paper introduces the set Z(A, ω) of all x in a Banach space X for which the second order abstract differential equation ...For a continuous, increasing function ω : R^+ →R^+/{0} of finite exponential type, this paper introduces the set Z(A, ω) of all x in a Banach space X for which the second order abstract differential equation (2) has a mild solution such that [ω(t)]^-1u(t,x) is uniformly continues on R^+, and show that Z(A, ω) is a maximal Banach subspace continuously embedded in X, where A ∈ B(X) is closed. Moreover, A[z(A,ω) generates an O(ω(t)) strongly continuous cosine operator function family.展开更多
This paper deals with the existence,uniqueness and continuous dependence of mild solutions for a class of conformable fractional differential equations with nonlocal initial conditions.The results are obtained by mean...This paper deals with the existence,uniqueness and continuous dependence of mild solutions for a class of conformable fractional differential equations with nonlocal initial conditions.The results are obtained by means of the classical fixed point theorems combined with the theory of cosine family of linear operators.展开更多
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
文摘For a continuous, increasing function ω : R^+ →R^+/{0} of finite exponential type, this paper introduces the set Z(A, ω) of all x in a Banach space X for which the second order abstract differential equation (2) has a mild solution such that [ω(t)]^-1u(t,x) is uniformly continues on R^+, and show that Z(A, ω) is a maximal Banach subspace continuously embedded in X, where A ∈ B(X) is closed. Moreover, A[z(A,ω) generates an O(ω(t)) strongly continuous cosine operator function family.
文摘This paper deals with the existence,uniqueness and continuous dependence of mild solutions for a class of conformable fractional differential equations with nonlocal initial conditions.The results are obtained by means of the classical fixed point theorems combined with the theory of cosine family of linear operators.