Resource-constrained project scheduling problem(RCPSP) is an important problem in research on project management. But there has been little attention paid to the objective of minimizing activities' cost with the re...Resource-constrained project scheduling problem(RCPSP) is an important problem in research on project management. But there has been little attention paid to the objective of minimizing activities' cost with the resource constraints that is a critical sub-problem in partner selection of construction supply chain management because the capacities of the renewable resources supplied by the partners will effect on the project scheduling. Its mathematic model is presented firstly, and analysis on the characteristic of the problem shows that the objective function is non-regular and the problem is NP-complete following which the basic idea for solution is clarified. Based on a definition of preposing activity cost matrix, a heuristic algorithm is brought forward. Analyses on the complexity of the heuristics and the result of numerical studies show that the heuristic algorithm is feasible and relatively effective.展开更多
This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient co...This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient conditions are derived such that the closed-loop system is asymptotically stable and the cost function value is no more than a certain upper bound in the presence of the additive controller gain perturbations.The non-fragile guaranteed cost controller can be obtained by solving a set of bilinear matrix inequalities(BMIs).The Van de Vusse model is utilized to demonstrate the validity and effectiveness of the proposed approach.展开更多
The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and n...The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.展开更多
Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is...Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.展开更多
This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A no...This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.展开更多
Nowadays, manufacturers are faced with severe challenges to response rapidly to changing demands and meet various customers’ needs with respect to production volume and product profile. Reconfigurable manufacturing p...Nowadays, manufacturers are faced with severe challenges to response rapidly to changing demands and meet various customers’ needs with respect to production volume and product profile. Reconfigurable manufacturing paradigm was proposed as an advanced manufacturing philosophy to enhance the adaptability and flexibility of manufacturing sys-tems. By physical and logical reconfiguration, Reconfigurable Manufacturing System (RMS) is able to fulfil customers’ needs in a cost-effective way by making full use of the resources currently available. This paper focuses on studying of reconfiguration cost of such systems. In this paper, DEDS modelling method Petri Net is used to construct the model for reconfiguration process of RMS which includes physical reconfiguration cost factors and conjunction matrix is used to describe the production processes. By highlighting the differences in the process set before and after reconfiguration, the reconfiguration principles have been proposed to describe and guide the process of the manufacturing system re-configuration. The simulation example is given to prove the validation of the proposed model.展开更多
This paper considers the guaranteed cost control problem for a class of two-dimensional (2-D) uncertain discrete systems described by the Fornasini-Marchesini (FM) first model with norm-bounded uncertainties. New line...This paper considers the guaranteed cost control problem for a class of two-dimensional (2-D) uncertain discrete systems described by the Fornasini-Marchesini (FM) first model with norm-bounded uncertainties. New linear matrix inequality (LMI) based characterizations are presented for the existence of static-state feedback guaranteed cost controller which guarantees not only the asymptotic stability of closed loop systems, but also an adequate performance bound over all the admissible parameter uncertainties. Moreover, a convex optimization problem is formulated to select the suboptimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function.展开更多
This paper considers the guaranteed cost control problem for a class of uncertain linear systems with both state and input delays. By representing the time-delay system in the descriptor system form and using a recent...This paper considers the guaranteed cost control problem for a class of uncertain linear systems with both state and input delays. By representing the time-delay system in the descriptor system form and using a recent result on bounding of cross products of vectors, we obtain new delay-dependent sufficient conditions for the existence of the guaranteed cost controller in terms of linear matrix inequalities. Two examples are presented which show the effectiveness of our approach.展开更多
This paper considers the guaranteed cost control problem for a class of uncertain discrete T-S fuzzy systems with time delay and a given quadratic cost function. Sufficient conditions for the existence of such control...This paper considers the guaranteed cost control problem for a class of uncertain discrete T-S fuzzy systems with time delay and a given quadratic cost function. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequalities (LMI) approach by constructing a specific nonquadratic Lyapunov-Krasovskii functional and a nonlinear PDC-like control law. A convex optimization problem is also formulated to select the optimal guaranteed cost controller that minimizes the upper bound of the closed-loop cost function. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed approaches.展开更多
This paper concerns the robust non-fragile guaranteed cost control for nonlinear time delay discrete-time systems based on Takagi-Sugeno (T-S) model. The problem is to design a guaranteed cost state feedback control...This paper concerns the robust non-fragile guaranteed cost control for nonlinear time delay discrete-time systems based on Takagi-Sugeno (T-S) model. The problem is to design a guaranteed cost state feedback controller which can tolerate uncertainties from both models and gain variation. Sufficient conditions for the existence of such controller are given based on the linear matrix inequality (LMI) approach combined with Lyapunov method and inequality technique. A numerical example is given to illustrate the feasibility and effectiveness of our result.展开更多
In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention...In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention is focused on designing a memoryless state feedback control law such that the closed-loop system is robust stochastically stable and the closed-loop cost function value is not more than a specified upper bound,for all admissible uncertainties. The key features of the approach include the introduction of a new type of suitable stochastic Lyapunov functional and free weighting matrices techniques. Sufficient conditions for the existence of such controller are obtained in terms of a set of linear matrix inequalities. A numerical example is given to illustrate the less conservatism of the proposed techniques.展开更多
文摘Resource-constrained project scheduling problem(RCPSP) is an important problem in research on project management. But there has been little attention paid to the objective of minimizing activities' cost with the resource constraints that is a critical sub-problem in partner selection of construction supply chain management because the capacities of the renewable resources supplied by the partners will effect on the project scheduling. Its mathematic model is presented firstly, and analysis on the characteristic of the problem shows that the objective function is non-regular and the problem is NP-complete following which the basic idea for solution is clarified. Based on a definition of preposing activity cost matrix, a heuristic algorithm is brought forward. Analyses on the complexity of the heuristics and the result of numerical studies show that the heuristic algorithm is feasible and relatively effective.
基金supported by the National Natural Science Foundation of China(60374015)
文摘This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient conditions are derived such that the closed-loop system is asymptotically stable and the cost function value is no more than a certain upper bound in the presence of the additive controller gain perturbations.The non-fragile guaranteed cost controller can be obtained by solving a set of bilinear matrix inequalities(BMIs).The Van de Vusse model is utilized to demonstrate the validity and effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (60564001)the Program for New Century Excellent Talentsin University (NCET-06-0756)
文摘The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.
基金the National Natural Science Foundation of China (60325311).
文摘Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.
基金supported by the National Natural Science Foundation of China(6057401160972164+1 种基金60904101)the Scientific Research Fund of Liaoning Provincial Education Department(2009A544)
文摘This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.
文摘Nowadays, manufacturers are faced with severe challenges to response rapidly to changing demands and meet various customers’ needs with respect to production volume and product profile. Reconfigurable manufacturing paradigm was proposed as an advanced manufacturing philosophy to enhance the adaptability and flexibility of manufacturing sys-tems. By physical and logical reconfiguration, Reconfigurable Manufacturing System (RMS) is able to fulfil customers’ needs in a cost-effective way by making full use of the resources currently available. This paper focuses on studying of reconfiguration cost of such systems. In this paper, DEDS modelling method Petri Net is used to construct the model for reconfiguration process of RMS which includes physical reconfiguration cost factors and conjunction matrix is used to describe the production processes. By highlighting the differences in the process set before and after reconfiguration, the reconfiguration principles have been proposed to describe and guide the process of the manufacturing system re-configuration. The simulation example is given to prove the validation of the proposed model.
文摘This paper considers the guaranteed cost control problem for a class of two-dimensional (2-D) uncertain discrete systems described by the Fornasini-Marchesini (FM) first model with norm-bounded uncertainties. New linear matrix inequality (LMI) based characterizations are presented for the existence of static-state feedback guaranteed cost controller which guarantees not only the asymptotic stability of closed loop systems, but also an adequate performance bound over all the admissible parameter uncertainties. Moreover, a convex optimization problem is formulated to select the suboptimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function.
基金This work was supported by the National Natural Science Foundation of China (No. 10461001).
文摘This paper considers the guaranteed cost control problem for a class of uncertain linear systems with both state and input delays. By representing the time-delay system in the descriptor system form and using a recent result on bounding of cross products of vectors, we obtain new delay-dependent sufficient conditions for the existence of the guaranteed cost controller in terms of linear matrix inequalities. Two examples are presented which show the effectiveness of our approach.
基金supported by the Natural Science Foundation of Hubei Province (No.2007ABA361)
文摘This paper considers the guaranteed cost control problem for a class of uncertain discrete T-S fuzzy systems with time delay and a given quadratic cost function. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequalities (LMI) approach by constructing a specific nonquadratic Lyapunov-Krasovskii functional and a nonlinear PDC-like control law. A convex optimization problem is also formulated to select the optimal guaranteed cost controller that minimizes the upper bound of the closed-loop cost function. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed approaches.
文摘This paper concerns the robust non-fragile guaranteed cost control for nonlinear time delay discrete-time systems based on Takagi-Sugeno (T-S) model. The problem is to design a guaranteed cost state feedback controller which can tolerate uncertainties from both models and gain variation. Sufficient conditions for the existence of such controller are given based on the linear matrix inequality (LMI) approach combined with Lyapunov method and inequality technique. A numerical example is given to illustrate the feasibility and effectiveness of our result.
基金Sponsored by the National Defense Basic Research Foundation of China (Grant No. 9140A17030207HT01)
文摘In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention is focused on designing a memoryless state feedback control law such that the closed-loop system is robust stochastically stable and the closed-loop cost function value is not more than a specified upper bound,for all admissible uncertainties. The key features of the approach include the introduction of a new type of suitable stochastic Lyapunov functional and free weighting matrices techniques. Sufficient conditions for the existence of such controller are obtained in terms of a set of linear matrix inequalities. A numerical example is given to illustrate the less conservatism of the proposed techniques.