Instrument calibration is vital to a successful control system because signal inputs to the system controllers come from such instruments. This paper presents a method for actualizing a standard low-cost loop calibrat...Instrument calibration is vital to a successful control system because signal inputs to the system controllers come from such instruments. This paper presents a method for actualizing a standard low-cost loop calibrator for the famous 4-20 mA electrical signaling scheme. The loop calibrator generates a linear current signal from 4 to 20 mA over a 250 ? typical process instrument load for calibration. The realization of the loop calibrator relies on a voltage-to-current converter to build a constant current source. The voltage controlled constant current source is built from discrete components and an op-amp to keep the cost low. Results from simulations and the prototype demonstrate the performance of the 4-20 mA loop calibrator which utilizes a greatly reduced number of components. The cost of these components is approximately 34% of the least expensive calibrator sampled, though other production costs are not included. This conclusion reinforces the fact that loop calibrators can be cheaper.展开更多
An efficient way of noise reduction has been presented: A modified Costas loop called as Masterpiece. The basic version of the Costas loop has been developed for SSB SC demodulation, but the same circuit can be applie...An efficient way of noise reduction has been presented: A modified Costas loop called as Masterpiece. The basic version of the Costas loop has been developed for SSB SC demodulation, but the same circuit can be applied for QAM (quadrature amplitude modulation) demodulation as well. Noise sensitivity of the basic version has been decreased. One trick is the transformation of the real channel input into complex signal, the other one is the application of our folding algorithm. The result is that the Masterpiece provides a 4QAM symbol error rate (SER) of 6 × 10<sup><span style="white-space:nowrap;">−</span>4</sup> for input signal to noise ratio (SNR) of <span style="white-space:nowrap;">−</span>1 dB. In this paper, an improved version of the original Masterpiece is introduced. The complex channel input signal is normalized, and rotational average is applied. The 4QAM result is SER of 3 × 10<sup><span style="white-space:nowrap;">−</span>4</sup> for SNR of <span style="white-space:nowrap;">−</span>1 dB. At SNR of 0 dB, the improved version produces 100 times better SER than that the original Costas loop does. In our times, this topic has a special importance because by application of our Masterpiece, all dangerous field strengths from 5G and WiFi, could be decreased by orders of magnitude. The Masterpiece can break the Shannon formula.展开更多
文摘Instrument calibration is vital to a successful control system because signal inputs to the system controllers come from such instruments. This paper presents a method for actualizing a standard low-cost loop calibrator for the famous 4-20 mA electrical signaling scheme. The loop calibrator generates a linear current signal from 4 to 20 mA over a 250 ? typical process instrument load for calibration. The realization of the loop calibrator relies on a voltage-to-current converter to build a constant current source. The voltage controlled constant current source is built from discrete components and an op-amp to keep the cost low. Results from simulations and the prototype demonstrate the performance of the 4-20 mA loop calibrator which utilizes a greatly reduced number of components. The cost of these components is approximately 34% of the least expensive calibrator sampled, though other production costs are not included. This conclusion reinforces the fact that loop calibrators can be cheaper.
文摘An efficient way of noise reduction has been presented: A modified Costas loop called as Masterpiece. The basic version of the Costas loop has been developed for SSB SC demodulation, but the same circuit can be applied for QAM (quadrature amplitude modulation) demodulation as well. Noise sensitivity of the basic version has been decreased. One trick is the transformation of the real channel input into complex signal, the other one is the application of our folding algorithm. The result is that the Masterpiece provides a 4QAM symbol error rate (SER) of 6 × 10<sup><span style="white-space:nowrap;">−</span>4</sup> for input signal to noise ratio (SNR) of <span style="white-space:nowrap;">−</span>1 dB. In this paper, an improved version of the original Masterpiece is introduced. The complex channel input signal is normalized, and rotational average is applied. The 4QAM result is SER of 3 × 10<sup><span style="white-space:nowrap;">−</span>4</sup> for SNR of <span style="white-space:nowrap;">−</span>1 dB. At SNR of 0 dB, the improved version produces 100 times better SER than that the original Costas loop does. In our times, this topic has a special importance because by application of our Masterpiece, all dangerous field strengths from 5G and WiFi, could be decreased by orders of magnitude. The Masterpiece can break the Shannon formula.