期刊文献+
共找到2,982篇文章
< 1 2 150 >
每页显示 20 50 100
The DUF579 proteins GhIRX15s regulate cotton fiber development by interacting with proteins involved in xylan synthesis
1
作者 Mengyun Li Feng Chen +6 位作者 Jingwen Luo Yanan Gao Jinglong Cai Wei Zeng Monika S.Doblin Gengqing Huang Wenliang Xu 《The Crop Journal》 SCIE CSCD 2024年第4期1112-1125,共14页
Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose an... Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose and lignin.To dissect the roles of hemicellulosic polysaccharides during fiber development,four IRREGULAR XYLEM 15(IRX15)genes,GhIRX15-1/-2/-3/-4,were functionally characterized in cotton.These genes encode DUF579 domain-containing proteins,which are homologs of AtIRX15 involved in xylan biosynthesis.The four GhIRX15 genes were predominantly expressed during fiber secondary wall thickening,and the encoded proteins were localized to the Golgi apparatus.Each GhIRX15 gene could restore the xylan deficient phenotype in the Arabidopsis irx15irx15l double mutant.Silencing of GhIRX15s in cotton resulted in shorter mature fibers with a thinner cell wall and reduced cellulose content as compared to the wild type.Intriguingly,GhIRX15-2 and GhIRX15-4 formed homodimers and heterodimers.In addition,the GhIRX15s showed physical interaction with glycosyltransferases GhGT43C,GhGT47A and GhGT47B,which are responsible for synthesis of the xylan backbone and reducing end sequence.Moreover,the GhIRX15s can form heterocomplexes with enzymes involved in xylan modification and side chain synthesis,such as GhGUX1/2,GhGXM1/2 and GhTBL1.These findings suggest that GhIRX15s participate in fiber xylan biosynthesis and modulate fiber development via forming large multiprotein complexes. 展开更多
关键词 cotton fiber Xylan biosynthesis GhIRX15s Protein-protein interaction Protein complexes
下载PDF
Identification of new cotton fiber-quality QTL by multiple genomic analyses and development of markers for genomic breeding
2
作者 Haozhe Tan Binghui Tang +10 位作者 Mengling Sun Qiulu Yin Yizan Ma Jianying Li Pengcheng Wang Zhonghua Li Guannan Zhao Maojun Wang Xianlong Zhang Chunyuan You Lili Tu 《The Crop Journal》 SCIE CSCD 2024年第3期866-879,共14页
Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(... Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(GWAS)of fiber-quality traits in 265 upland cotton breeding intermediate lines(GhBreeding),combined with genome-wide selective sweep analysis(GSSA)and genomic selection(GS),revealed 25 QTL.Most of these QTL were ignored by only using GWAS.The CRISPR/Cas9 mutants of GhMYB_D13 had shorter fiber,which indicates the credibility of QTL to a certain extent.Then these QTL were verified in other cotton natural populations,5 stable QTL were found having broad potential for application in breeding.Additionally,among these 5 stable QTL,superior genotypes of 4 showed an enrichment in most improved new varieties widely cultivated currently.These findings provide insights for how to identify more QTL through combined multiple genomic analysis to apply in breeding. 展开更多
关键词 cotton fiber quality breeding GWAS Genome-wide selective sweep analysis Genomic selection InDel markers
下载PDF
GhCASPL1 regulates secondary cell wall thickening in cotton fibers by stabilizing the cellulose synthase complex on the plasma membrane
3
作者 Li Zhang Xingpeng Wen +3 位作者 Xin Chen Yifan Zhou Kun Wang Yuxian Zhu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第12期2632-2647,共16页
Cotton(Gossypium hirsutum)fibers are elongated single cells that rapidly accumulate cellulose during secondary cell wall(SCW)thickening,which requires cellulose synthase complex(CSC)activity.Here,we describe the CSC-i... Cotton(Gossypium hirsutum)fibers are elongated single cells that rapidly accumulate cellulose during secondary cell wall(SCW)thickening,which requires cellulose synthase complex(CSC)activity.Here,we describe the CSC-interacting factor CASPARIAN STRIP MEMBRANE DOMAIN-LIKE1(GhCASPL1),which contributes to SCW thickening by influencing CSC stability on the plasma membrane.GhCASPL1 is preferentially expressed in fiber cells during SCW biosynthesis and encodes a MARVEL domain protein.The ghcaspl1 ghcaspl2 mutant exhibited reduced plant height and produced mature fibers with fewer natural twists,lower tensile strength,and a thinner SCW compared to the wild type.Similarly,the Arabidopsis(Arabidopsis thaliana)caspl1 caspl2 double mutant showed a lower cellulose content and thinner cell walls in the stem vasculature than the wild type but normal plant morphology.Introducing the cotton gene GhCASPL1 successfully restored the reduced cellulose content of the Arabidopsis caspl1 caspl2 mutant.Detergent treatments,ultracentrifugation assays,and enzymatic assays showed that the CSC in the ghcaspl1 ghcaspl2 double mutant showed reduced membrane binding and decreased enzyme activity compared to the wild type.GhCASPL1 binds strongly to phosphatidic acid(PA),which is present in much higher amounts in thickening fiber cells compared to ovules and leaves.Mutating the PA-binding site in GhCASPL1 resulted in the loss of its colocalization with GhCesA8,and it failed to localize to the plasma membrane.PA may alter membrane structure to facilitate protein–protein interactions,suggesting that GhCASPL1 and PA collaboratively stabilize the CSC.Our findings shed light on CASPL functions and the molecular machinery behind SCW biosynthesis in cotton fibers. 展开更多
关键词 cellulose synthase complex(CSC) cotton fiber GhCASPL1 plasma membrane(PM) secondary cell wall(SCW)
原文传递
Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis 被引量:56
4
作者 Jin-Ying Gou Ling-Jian Wang +2 位作者 Shuang-Ping Chen Wen-Li Hu Xiao-Ya Chen 《Cell Research》 SCIE CAS CSCD 2007年第5期422-434,共13页
Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell w... Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell wall synthesis stages, we compared the respective transcriptomes and metabolite profiles. Comparative analysis of transcriptomes by cDNA array identified 633 genes that were differentially regulated during fiber development. Principal component analysis (PCA) using expressed genes as variables divided fiber samples into four groups, which are diagnostic of developmental stages. Similar grouping results are also found if we use non-polar or polar metabolites as variables for PCA of developing fibers. Auxin signaling, wall-loosening and lipid metabolism are highly active during fiber elongation, whereas cellulose biosynthesis is predominant and many other metabolic pathways are downregulated at the secondary cell wall synthesis stage. Transcript and metabolite profiles and enzyme activities are consistent in demonstrating a specialization process of cotton fiber development toward cellulose synthesis. These data demonstrate that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript and metabolite profiles. During the secondary cell wall synthesis stage, metabolic pathways are streamed into cellulose synthesis. 展开更多
关键词 cotton fiber TRANSCRIPTOME metabolite profile AUXIN cell elongation cellulose synthesis
下载PDF
Effects of Increased Night Temperature on Cellulose Synthesis and the Activity of Sucrose Metabolism Enzymes in Cotton Fiber 被引量:3
5
作者 TIAN Jing-shan HU Yuan-yuan +5 位作者 GAN Xiu-xia ZHANG Ya-li HU Xiao-bing GOU Ling LUO Hong-hai ZHANG Wang-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第6期979-988,共10页
Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature inc... Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature increase was stimulated in the field using far-infrared quartz tubes set in semi-mobile incubators and compared with the normal night temperatures (control) in order to investigate the effects of night temperature on the cotton fiber cellulose synthesis during secondary wall thickening. The results showed that the activity of sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) quickly increased and remained constant during the development of cotton fiber, while the activity of acid invertase (AI) and alkaline invertase (NI) decreased, increased night temperatures prompted the rapid transformation of sugar, and all the available sucrose fully converted into cellulose. With night temperature increasing treatment, an increase in SuSy activity and concentration of sucrose indicate more sucrose converted into UDPG (uridin diphosphate-glucose) during the early and late stages of cotton fiber development. Furthermore, SPS activity and the increased concentration of fructose accelerated fructose degradation and reduced the inhibition of fructose to SuSy; maintaining higher value of allocation proportion of invertase and sucrose during the early development stages of cotton fiber, which was propitious to supply a greater carbon source and energy for cellulose synthesis. Therefore, the minimum temperature in the nightime was a major factor correlated with the activity of sucrose metabolism enzymes in cotton fiber. Consequently, soluble sugar transformation and cellulose accumulation were closely associated with the minimum night temperature. 展开更多
关键词 cotton fiber night temperature sucrose metabolism enzyme activity
下载PDF
Characterization of a Cotton Fiber Gene Promoter 被引量:2
6
作者 SHANGGUAN Xiao-xia,XU Bing,YU Zong-xia,WANG Ling-jian,CHEN Xiao-ya(National Key Laboratory of Plant Molecular Genetics,Institute of Plant Physiology and Ecology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences,Shanghai 200032,China) 《棉花学报》 CSCD 北大核心 2008年第S1期67-,共1页
Cotton fibers are unicellular trichomes derived from outer integument cells of the ovule.Our previously study showed that cotton R2R3 MYB transcript factor GaMYB2 could complement the Arabidopsis trichome mutant of gl... Cotton fibers are unicellular trichomes derived from outer integument cells of the ovule.Our previously study showed that cotton R2R3 MYB transcript factor GaMYB2 could complement the Arabidopsis trichome mutant of glabra1(gl1),suggesting that cotton fiber initiation and Arabidopsis 展开更多
关键词 PROMOTER cotton fiber TRICHOME glandular trichomes MYB
下载PDF
Identification of Differentially Expressed Genes Associated with Cotton Fiber Development in a Chromosomal Substitution Line(CS-B22sh) 被引量:4
7
作者 SOLIMAN Khairy M BOLTON James J SAHA Sukumar JENKINS Johnie N 《棉花学报》 CSCD 北大核心 2008年第S1期36-,共1页
One of the impediments in the genetic improvement of cotton fiber is the paucity of information about genes associated with fiber development.Availability of chromosome arm substitution line CS-
关键词 CS-B22sh Identification of Differentially Expressed Genes Associated with cotton fiber Development in a Chromosomal Substitution Line LINE
下载PDF
NaOH/Urea Swelling Treatment and Hydrothermal Degradation of Waste Cotton Fiber 被引量:2
8
作者 Lixia Gao Sheng Shi +3 位作者 Wensheng Hou Shuhua Wang Zhifeng Yan Chao Ge 《Journal of Renewable Materials》 SCIE EI 2020年第6期703-713,共11页
In this study,waste cotton fabric was used as cellulose raw material and pretreated in aqueous NaOH/urea solution system to investigate the effect of NaOH/urea pretreatment solution on the hydrolysis of cotton fiber.T... In this study,waste cotton fabric was used as cellulose raw material and pretreated in aqueous NaOH/urea solution system to investigate the effect of NaOH/urea pretreatment solution on the hydrolysis of cotton fiber.The cotton fiber was pretreated with different conditions of aqueous NaOH/urea solution,and the pretreated cotton fiber was hydrolyzed under the same conditions as the original cotton fiber.The results of characterization analysis showed that water retention value of pretreated cotton fiber was higher than that of unpretreated sample.Moreover,the cotton fiber presented both a convoluted structure and a coarser surface,XRD results suggested that the crystallinity degree of cellulose decreased dramatically,more cellulose II appeared,and the hydrogen bond is broken.Among the different pretreatment conditions,the pretreatment effect was the best when the reaction temperature was 0°C,the solid-liquid ratio was 2:50,and the NaOH/urea ratio was 7:12.The hydrolysis experiments of pretreated and unpretreated cotton fibers showed that when the hydrothermal temperature was 230°C,the heat preservation was 2 h,and the hydrochloric acid concentration was 5 wt.%,the glucose yield reached 29.99%.H+could catalyze the hydrolysis of cotton fiber more effectively due to damage to crystal structure and hydrogen bonds. 展开更多
关键词 Waste cotton fibers NaOH/urea PRETREATMENT hydrolyze recycling and reusing
下载PDF
GhDET2,a Steroid 5alpha-reductase,Plays an Important Role in Cotton Fiber Cell Initiation and Elongation 被引量:1
9
作者 LUO Ming,XIAO Yue-hua,LI Xian-bi,LI De-mou,HOU Lei,HU Ming-yu,PEI Yan(Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture,Biotechnology Research Center,Southwest University,Chongqing 400716,China) 《棉花学报》 CSCD 北大核心 2008年第S1期130-,共1页
Cotton(Gossypium hirsutum L.) fibers,one of the most important natural raw materials for the textile industry,are highly elongated trichomes from epidermal cells of cotton ovules.Among the longest plant cells ever cha... Cotton(Gossypium hirsutum L.) fibers,one of the most important natural raw materials for the textile industry,are highly elongated trichomes from epidermal cells of cotton ovules.Among the longest plant cells ever characterized,cotton fiber is an ideal system for studying plant cell elongation. 展开更多
关键词 BRs GhDET2 a Steroid 5alpha-reductase Plays an Important Role in cotton fiber Cell Initiation and Elongation Cell
下载PDF
Comprehensive Characterization Model of Integrated Cotton Fiber Quality Index 被引量:1
10
作者 刘贵 杨瑜榕 +2 位作者 王明葵 YANG Shouren 于伟东 《Journal of Donghua University(English Edition)》 EI CAS 2011年第4期379-383,共5页
An integrated cotton fiber quality index (ICFQI) model with cotton fiber qualities which can directly express cotton fiber integrated quality and spinning yarn quality was studied. The fiber length, strength, Micron... An integrated cotton fiber quality index (ICFQI) model with cotton fiber qualities which can directly express cotton fiber integrated quality and spinning yarn quality was studied. The fiber length, strength, Micronalre (fiber fineness and fiber maturity), uniformity of fiber length, and short fiber content are the pivotal indexes expressing ICFQI. All of the results above are the basic knowledge to build up the models of ICFQI. According to spinning consistency index (SCI), spinning strength and spinning yarn integrated quality, ICFQI was the best choice. As the methods of ICFQI had quite a lot of advantages like explicit mechanism, few independent variables. The integrated fiber quality index had a significant positive correlation with yarn strength and spinning consistency, significant negative correlation with yarn evenness and yarn thin places. In additional, the model of the relationship between ICFQI and SCI was established as: SCI=0. 235 6·ICFQI +56.153. It was concluded that ICFQI value was the shared reference index for the testing of fiber inspection agency and the selection and distribution of raw cotton bales by textile mills. 展开更多
关键词 fiber quality integrated cotton fiber quality index(ICFQ1) comprehensive characterization model
下载PDF
Regional Distribution of Cotton Fiber Quality in China 被引量:2
11
作者 TANG Shu-rong,YANG Wei-hua(Cotton Research Institute,Chinese Academy of Agricultural Sciences Key Laboratory of Cotton Genetic Improvement,Ministry of Agriculture,Anyang,Henan 455000,China) 《棉花学报》 CSCD 北大核心 2008年第S1期125-,共1页
The fiber quality status is very important for super quality cotton production and diverse requirements of textile industry in China.In this study,the quality of cotton fiber samples which are collected from 13 major ... The fiber quality status is very important for super quality cotton production and diverse requirements of textile industry in China.In this study,the quality of cotton fiber samples which are collected from 13 major cotton production provinces between 2001 to 2005 were analyzed.Eight quality 展开更多
关键词 Regional Distribution of cotton fiber Quality in China
下载PDF
Global identification of genes associated with xylan biosynthesis in cotton fiber 被引量:2
12
作者 CHEN Feng GUO Yanjun +4 位作者 CHEN Li GAN Xinli LIU Min LI Juan XU Wenliang 《Journal of Cotton Research》 2020年第3期184-198,共15页
Background:Mature cotton fiber secondary cell wall comprises largely of cellulose(>90%)and small amounts of xylan and lignin.Little is known about the cotton fiber xylan biosynthesis by far.Results:To comprehensive... Background:Mature cotton fiber secondary cell wall comprises largely of cellulose(>90%)and small amounts of xylan and lignin.Little is known about the cotton fiber xylan biosynthesis by far.Results:To comprehensively survey xylan biosynthetic genes in cotton fiber,we identified five IRX9,five IRX10,one IRX14,six IRX15,two FRA8,one PARVUS,eight GUX,four GXM,two RWA,two AXY9,13 TBL genes by using phylogenetic analysis coupled with expression profile analysis and co-expression analyses.In addition,we also identified two GT61 members,two GT47 members,and two DUF579 family members whose homologs in Arabidopsis were not functionally characterized.These 55 genes were regarded as the most probable genes to be involved in fiber xylan biosynthesis.Further complementation analysis indicated that one IRX10 like and two FRA8 related genes were able to partially recover the irregular xylem phenotype conferred by the xylan deficiency in their respective Arabidopsis mutant.We conclude that these genes are functional orthologs of respective genes that are implicated in GX biosynthesis.Conclusion:The list of 55 cotton genes presented here provides not only a solid basis to uncover the biosynthesis of xylan in cotton fiber,but also a genetic resource potentially useful for future studies aiming at fiber improvement via biotechnological approaches. 展开更多
关键词 cotton fiber Secondary cell wall Xylan biosynthesis Expression profile CO-EXPRESSION
下载PDF
Evolution of pectin synthesis relevant galacturonosyltransferase gene family and its expression during cotton fiber development 被引量:1
13
作者 FAN Senmiao LIU Aiying +10 位作者 ZOU Xianyan ZHANG Zhen GE Qun GONG Wankui LI Junwen GONG Juwu SHI Yuzhen DENG Xiaoying JIA Tingting YUAN Youlu SHANG Haihong 《Journal of Cotton Research》 2021年第3期239-260,共22页
Background:Pectin is a key substance involved in cell wall development,and the galacturonosyltransferases(GAUTs)gene family is a critical participant in the pectin synthesis pathway.Systematic and comprehensive resear... Background:Pectin is a key substance involved in cell wall development,and the galacturonosyltransferases(GAUTs)gene family is a critical participant in the pectin synthesis pathway.Systematic and comprehensive research on GAUTs has not been performed in cotton.Analysis of the evolution and expression patterns of the GAUT gene family in different cotton species is needed to in crease kno wledge of the functi on of pectin in cotto n fiber development.Results:In this study,we have identified 131 GAUT genes in the genomes of four Gossypium species(G.raimondii,G barbadense,G.hirsutum,and G.arboreum),and classified them as GAUT-A,GAUT-B and GAUT-C,which coding probable galacturonosyltransferases.Among them,the GAUT genes encode proteins GAUT1 to GAUT15.All GAUT proteins except for GAUT7 contai n a con served glycosyl transferase family 8 domain(H-DN-A-SW-S-V-H-T-F).The conserved sequence of GAUT7 is PLN(phospholamban)02769 domain.According to c/s-elemet analysis,GAUT genes transcript levels may be regulated by horm ones such as JA,GA,SA,ABA,Me-JA,and IA A.The evoluti on and transcription patterns of the GAUT gene family in different cotton species and the transcript levels in upland cotton lines with different fiber st「ength were analyzed.Peak transcript level of GhGAUT genes have been observed before 15 DPA.In the six materials with high fiber strength,the transcription of GhGAUT genes were concentrated from 10 to 15 DPA;while the highest transcript levels in low fiber st「ength materials were detected between 5 and 10 DPA.These results lays the foundation for future research on gene function during cotton fiber development.Conclusions:The GAUT gene family may affect cotton fiber development,including fiber elongation and fiber thickening.In the low strength fiber lines,GAUTs mainly participate in fiber elongation,whereas their major effect on cotton with high strength fiber is related to both elongation and thickening. 展开更多
关键词 cotton fiber development PECTIN Galacturonosyltransferases EVOLUTION Transcription patterns
下载PDF
Membrane lipid raft organization during cotton fiber development 被引量:1
14
作者 XU Fan SUO Xiaodong +4 位作者 LI Fang BAO Chaoya HE Shengyang HUANG Li LUO Ming 《Journal of Cotton Research》 2020年第2期115-123,共9页
Background:Cotton fiber is a single-celled seed trichome that originates from the ovule epidermis.It is an excellent model for studying cell elongation.Along with the elongation of cotton fiber cell,the plasma membran... Background:Cotton fiber is a single-celled seed trichome that originates from the ovule epidermis.It is an excellent model for studying cell elongation.Along with the elongation of cotton fiber cell,the plasma membrane is also extremely expanded.Despite progress in understanding cotton fiber cell elongation,knowledge regarding the relationship of plasma membrane in cotton fiber cell development remains elusive.Methods:The plasma membrane of cotton fiber cells was marked with a low toxic fluorescent dye,di-4-ANEPPDHQ,at different stages of development.Fluorescence images were obtained using a confocal laser scanning microscopy.Subsequently,we investigated the relationship between lipid raft activity and cotton fiber development by calculating generalized polarization(GP values)and dual-channel ratio imaging.Results:We demonstrated that the optimum dyeing conditions were treatment with 3μmol·L-1 di-4-ANEPPDHQ for 5 min at room temperature,and the optimal fluorescence images were obtained with 488 nm excitation and500–580 nm and 620–720 nm dual channel emission.First,we examined lipid raft organization in the course of fiber development.The GP values were high in the fiber elongation stage(5–10 DPA,days past anthesis)and relatively low in the initial(0 DPA),secondary cell wall synthesis(20 DPA),and stable synthesis(30 DPA)stages.The GP value peaked in the 10 DPA fiber,and the value in 30 DPA fiber was the lowest.Furthermore,we examined the differences in lipid raft activity in fiber cells between the short fiber cotton mutant,Li-1,and its wild-type.The GP values of the Li-1 mutant fiber were lower than those of the wild type fiber at the elongation stage,and the GP values of 10 DPA fibers were lower than those of 5 DPA fibers in the Li-1 mutant.Conclusions:We established a system for examining membrane lipid raft activity in cotton fiber cells.We verified that lipid raft activity exhibited a low-high-low change regularity during the development of cotton fiber cell,and the pattern was disrupted in the short lint fiber Li-1 mutant,suggesting that membrane lipid order and lipid raft activity are closely linked to fiber cell development. 展开更多
关键词 cotton fiber Lipid raft Di-4-ANEPPDHQ
下载PDF
Preparation of TiO_2 Nanoparticles Coated Cotton Fibers at Low Temperature and Their Photocatalytic Activity
15
作者 石中亮 卢昌岁 +2 位作者 王海波 潘永娥 姚淑华 《过程工程学报》 CAS CSCD 北大核心 2010年第4期809-814,共6页
TiO_2 nanoparticles coated cotton fiber composite was successfully prepared by using a sol-gel method at low temperature(about 100℃) using tetrabutyl-titanate [Ti(OBu)_4] as raw material.The preparation of the TiO_2 ... TiO_2 nanoparticles coated cotton fiber composite was successfully prepared by using a sol-gel method at low temperature(about 100℃) using tetrabutyl-titanate [Ti(OBu)_4] as raw material.The preparation of the TiO_2 colloid and the composite were described.The properties of resulting materials were characterized by SEM and XRD,the photocatalytic degradation performance was tested using methylene blue(MB) as the target pollutant in aqueous solution.The results showed that the amorphous TiO_2 nanoparticles were distributed evenly on the outer surfaces of cotton fibers,which shows efficient photocatalytic properties when exposed to UV light,the degradation rate of MB reached 95.35% under the conditions of catalyst dosage 2.5 g/L,MB concentration 50 mg/L,irradiation time 120 min,and pH 10,and the photocatalytic activity of TiO_2/cotton fibers remained above 90% of its activity as-prepared after being used four times,the degradation rate of MB could reach 88.78% when irradiation time was 120 min.The photocatalytic degradation of MB could be properly described by the first-order kinetic law.By comparison of the removal rates of MB with and without UV light,it could be affirmed that the disappearance of MB was due to photodegradation rather than adsorption on cotton fibers. 展开更多
关键词 TiO2 nanoparticles cotton fibers PHOTOCATALYSIS methylene blue
下载PDF
Comparative transcriptome and lipidome reveal that a low K^(+) signal effectively alleviates the effect induced by Ca^(2+) deficiency in cotton fibers
16
作者 GUO Kai GAO Wei +11 位作者 ZHANG Tao-rui WANG Zu-ying SUN Xiao-ting YANG Peng LONG Lu LIU Xue-ying WANG Wen-wen TENG Zhong-hua LIU Da-jun LIU De-xin TU Li-li ZHANG Zheng-sheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第8期2306-2322,共17页
Calcium(Ca^(2+))plays an important role in determining plant growth and development because it maintains cell wall and membrane integrity.Therefore,understanding the role of Ca^(2+)in carbon and lipid metabolism could... Calcium(Ca^(2+))plays an important role in determining plant growth and development because it maintains cell wall and membrane integrity.Therefore,understanding the role of Ca^(2+)in carbon and lipid metabolism could provide insights into the dynamic changes in cell membranes and cell walls during the rapid elongation of cotton fibers.In the present study,we found that the lack of Ca^(2+)promoted fiber elongation and rapid ovule expansion,but it also caused tissue browning in the ovule culture system.RNA-sequencing revealed that Ca^(2+)deficiency induced cells to be highly oxidized,and the expression of genes related to carbon metabolism and lipid metabolism was activated significantly.All gene members of nine key enzymes involved in glycolysis were up-regulated,and glucose was significantly reduced in Ca^(2+)deficiency-treated tissues.Ca^(2+)deficiency adjusted the flowing of glycolysis metabolic.However,low K^(+)recovered the expression levels of glycolysis genes and glucose content caused by Ca^(2+)deficiency.Electrospray ionizationtandem mass spectrometry technology was applied to uncover the dynamic profile of lipidome under Ca^(2+)and K^(+)interacted conditions.Ca^(2+)deficiency led to the decrease of fatty acid(FA),diacylglycerol(DAG),glycolipid and the significant increase of triacylglycerol(TAG),phospholipid phosphatidylethanolamine(PE),phosphatidylglycerol(PG),and PC(phosphatidylcholine).Low K^(+)restored the contents of FA,phospholipids,and glycolipids,effectively relieved the symptoms caused by Ca^(2+)deficiency,and recovered the development of fiber cells.This study revealed dynamic changes in transcript and metabolic levels and uncovered the signaling interaction of Ca^(2+)deficiency and low K^(+)in glycolysis and lipid metabolism during fiber development. 展开更多
关键词 cotton fiber GLYCOLYSIS LIPIDOME calcium potassium
下载PDF
Fiber-specific increase of carotenoid content promotes cotton fiber elongation by increasing abscisic acid and ethylene biosynthesis
17
作者 Jianyan Zeng Dan Yao +17 位作者 Ming Luo Lingli Ding Yi Wang Xingying Yan Shu’e Ye Chuannan Wang Yiping Wu Jingyi Zhang Yaohua Li Lingfang Ran Yonglu Dai Yang Chen Fanlong Wang Hanyan Lai Nian Liu Nianjuan Fang Yan Pei Yuehua Xiao 《The Crop Journal》 SCIE CSCD 2023年第3期774-784,共11页
Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate lig... Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate light harvesting,and scavenge reactive oxygen species.Although carotenoids accumulate predominantly in rapidly elongating cotton fibers,their roles in cotton fiber development remain poorly understood.In this study,a fiber-specific promoter proSCFP was applied to drive the expression of GhOR1Del,a positive regulator of carotenoid accumulation,to upregulate the carotenoid level in cotton fiber in planta.Fiber length,strength,and fineness were increased in proSCFP:GhOR1Del transgenic cotton and abscisic acid(ABA)and ethylene contents were increased in elongating fibers.The ABA downstream regulator GhbZIP27a stimulated the expression of the ethylene synthase gene GhACO3 by binding to its promoter,suggesting that ABA promoted fiber elongation by increasing ethylene production.These findings suggest the involvement of carotenoids and ABA signaling in promoting cotton fiber elongation and provide a strategy for improving cotton fiber quality. 展开更多
关键词 Abscisic acid CAROTENOID cotton fiber elongation ETHYLENE ORANGE gene
下载PDF
Transcriptome Profiling and Analysis during Cotton Fiber Cell Development
18
作者 ZHU Yu-xian(The National Laboratory of Protein Engineering and Plant Genetic Engineering,College of Life Sciences,Peking University,Beijing 100871,China) 《棉花学报》 CSCD 北大核心 2008年第S1期129-,共1页
In this project,we aim to elucidate the molecular mechanism controlling initiation and elongation of tetraploid Gossypium hirsutum fiber cells by setting up a high throughput custom-designed
关键词 HIGH CELL Transcriptome Profiling and Analysis during cotton fiber Cell Development
下载PDF
Genetic Analysis of Cotton Fiber Traits by Molecular Markers
19
作者 LIN Zhong-Xu,ZHANG Xian-long(Huazhong Agricultural University,Wuhan,430070,China) 《棉花学报》 CSCD 北大核心 2008年第S1期127-,共1页
1.Development of EST-SSRs derived from G.barbadense:One hundred and nineteen EST-SSRs were developed based on 98 unique ESTs from a cDNA library constructed in our laboratory using developing fibers from G.barbadense ... 1.Development of EST-SSRs derived from G.barbadense:One hundred and nineteen EST-SSRs were developed based on 98 unique ESTs from a cDNA library constructed in our laboratory using developing fibers from G.barbadense cv.3-79.Among the SSRs,trinucleotide AAG appeared 展开更多
关键词 QTLS SSRS Genetic Analysis of cotton fiber Traits by Molecular Markers
下载PDF
Genetical Genomics Dissection of Cotton Fiber Quality
20
作者 LACAPE J M JACOBS J LLEWELLYN D 《棉花学报》 CSCD 北大核心 2008年第S1期30-,共1页
Cotton fiber is a commodity of key economic importance in both developed and developing countries.The two cultivated species,Gossypium hirsutum and G.barbadense,are
关键词 QTL Genetical Genomics Dissection of cotton fiber Quality
下载PDF
上一页 1 2 150 下一页 到第
使用帮助 返回顶部