In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and perfo...In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations.展开更多
In conventional research on beam gas coulomb scattering (BGCS), only the related beam lifetime using the analytical method is studied. In this paper, using the particle-in-cell Monte Carlo collisions (PIC-MCC) met...In conventional research on beam gas coulomb scattering (BGCS), only the related beam lifetime using the analytical method is studied. In this paper, using the particle-in-cell Monte Carlo collisions (PIC-MCC) method, we not only simulated the beam lifetime but also explored the effect of BGCS on the beam distribution. In order to better estimate the effect on particle distribution, we study the ultra-low emittance electron beam. Here we choose the HeFei Advanced Light Source. By counting the lost particles in a certain time, the corresponding beam lifetime we simulated is 4.8482 h/13.8492 h in x/y, which is very close to the theoretic value (5.0555 h/13.7024 h in x/y). By counting the lost particles relative to the collided particles, the simulated value of the loss probability of collided particles is 1.3431e-04, which is also very close to the theoretical value (1.3824e-04). Besides, the simulation shows there is a tail in the transverse distribution due to the BGCS. The close match of the simulation with the theoretic value in beam lifetime and loss probability indicates our simulation is reliable.展开更多
sSi/Si_(0.5)Ge_(0.5)/sSOI quantum-well(QW) p-MOSFETs with Hf O_2/Ti N gate stack were fabricated and characterized. According to the low temperature experimental results, carrier mobility of the strained Si_(0....sSi/Si_(0.5)Ge_(0.5)/sSOI quantum-well(QW) p-MOSFETs with Hf O_2/Ti N gate stack were fabricated and characterized. According to the low temperature experimental results, carrier mobility of the strained Si_(0.5)Ge_(0.5)QW p-MOSFET was mainly governed by phonon scattering from 300 to 150 K and Coulomb scattering below150 K, respectively. Coulomb scattering was intensified by the accumulated inversion charges in the Si cap layer of this Si/Si Ge heterostructure, which led to a degradation of carrier mobility in the Si Ge channel, especially at low temperature.展开更多
Electron mobility scattering mechanism in AlN/GaN heterostuctures is investigated by temperature-dependent Hall measurement, and it is found that longitudinal optical phonon scattering dominates electron mobility near...Electron mobility scattering mechanism in AlN/GaN heterostuctures is investigated by temperature-dependent Hall measurement, and it is found that longitudinal optical phonon scattering dominates electron mobility near room temperature while the interface roughness scattering becomes the dominant carrier scattering mechanism at low temperatures (~ 100 K). Based on measured current-voltage characteristics of prepared rectangular AlN/GaN heterostructure field-effect transistor under different temperatures, the temperature-dependent variation of electron mobility under different gate biases is inves- tigated. The polarization Coulomb field (PCF) scattering is found to become an important carrier scattering mechanism after device processing under different temperatures. Moreover, it is found that the PCF scattering is not generated from the thermal stresses, but from the piezoelectric contribution induced by the electrical field in the thin A1N barrier layer. This is attributed to the large lattice mismatch between the extreme thinner AlN barrier layer and GaN, giving rise to a stronger converse piezoelectric effect.展开更多
In this study rectangular AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs) with 22-nm and 12-nm AlGaN barrier layers are fabricated, respectively. Using the measured capacitance–voltage and current–volt...In this study rectangular AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs) with 22-nm and 12-nm AlGaN barrier layers are fabricated, respectively. Using the measured capacitance–voltage and current–voltage characteristics of the prepared devices with different Schottky areas, it is found that after processing the device, the polarization Coulomb field(PCF) scattering is induced and has an important influence on the two-dimensional electron gas electron mobility.Moreover, the influence of PCF scattering on the electron mobility is enhanced by reducing the AlGaN barrier thickness.This leads to the quite different variation of the electron mobility with gate bias when compared with the AlGaN barrier thickness. This mainly happens because the thinner AlGaN barrier layer suffers from a much stronger electrical field when applying a gate bias, which gives rise to a stronger converse piezoelectric effect.展开更多
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are sim...By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.展开更多
A physical model for mobility degradation by interface-roughness scattering and Coulomb scattering is proposed for SiGe p-MOSFET with a high-k dielectric/SiO2 gate stack. Impacts of the two kinds of scatterings on mob...A physical model for mobility degradation by interface-roughness scattering and Coulomb scattering is proposed for SiGe p-MOSFET with a high-k dielectric/SiO2 gate stack. Impacts of the two kinds of scatterings on mobility degradation are investigated. Effects of interlayer (SiO2) thickness and permittivities of the high-k dielectric and interlayer on carrier mobility are also discussed. It is shown that a smooth interface between high-k dielectric and interlayer, as well as moderate permittivities of high-k dielectrics, is highly desired to improve carriers mobility while keeping alow equivalent oxide thickness. Simulated results agree reasonably with experimental data.展开更多
A transport equation of momentum for relativistic electrons scattered isotropically was previously reported. Here, a momentum-transport equation for relativistic electrons “scattered anisotropically” by the Coulomb ...A transport equation of momentum for relativistic electrons scattered isotropically was previously reported. Here, a momentum-transport equation for relativistic electrons “scattered anisotropically” by the Coulomb force is inquired into. An ideal plasma consisting of electrons and deuterons is treated again. Also, to raise a generation-ability of a thermionic energy converter, a means of introducing external electric and magnetic fields within “a converter in which an emitter plate and a collector plate face simply each other” is proposed.展开更多
Based on the measured capacitance–voltage(C–V) curves and current–voltage(I–V) curves for the prepared differently-sized AlN/GaN heterostructure field-effect transistors(HFETs), the I–V characteristics of t...Based on the measured capacitance–voltage(C–V) curves and current–voltage(I–V) curves for the prepared differently-sized AlN/GaN heterostructure field-effect transistors(HFETs), the I–V characteristics of the AlN/GaN HFETs were simulated using the quasi-two-dimensional(quasi-2D) model. By analyzing the variation in the electron mobility for the two-dimensional electron gas(2DEG) with the channel electric field, it is found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field(PCF) scattering. The 2DEG electron mobility difference is mostly caused by the PCF scattering which can reach up to 899.6 cm^2/(V·s)(sample a), 1307.4 cm^2/(V·s)(sample b),1561.7 cm^2/(V s)(sample c) and 678.1 cm^2/(V·s)(sample d), respectively. When the 2DEG sheet density is modulated by the drain–source bias, the electron mobility for samples a, b and c appear to peak with the variation of the 2DEG sheet density, but for sample d, no peak appears and the electron mobility rises with the increase in the2 DEG sheet density.展开更多
Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was...Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was found there is a significant difference between Schottky drain AlGaN/AlN/GaN HFETs and the control group both in drain series resistance and in two-dimensional electron gas (2DEG) electron mobility in the gate–drain channel. We attribute this to the different influence of Ohmic drain contacts and Schottky drain contacts on the strained AlGaN barrier layer. For conventional AlGaN/AlN/GaN HFETs, annealing drain Ohmic contacts gives rise to a strain variation in the AlGaN barrier layer between the gate contacts and the drain contacts, and results in strong polarization Coulomb field scattering in this region. In Schottky drain AlGaN/AlN/GaN HFETs, the strain in the AlGaN barrier layer is distributed more regularly.展开更多
We simulate the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths using the quasi-two-dimensional (quasi-2D) model. The calculati...We simulate the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths using the quasi-two-dimensional (quasi-2D) model. The calculation results obtained using the modified mobility model are found to accord well with the experimental data. By analyzing the variation of the electron mobility for the two-dimensional electron gas (213EG) with the electric field in the linear region of the AlGaN/AlN/GaN HFET I-V output characteristics, it is found that the polarization Coulomb field scattering still plays an important role in the electron mobility of AlGaN/AlN/GaN HFETs at the higher drain voltage and channel electric field. As drain voltage and channel electric field increase, the 2DEG density reduces and the polarization Coulomb field scattering increases, as a result, the 2DEG electron mobility decreases.展开更多
The parasitic source resistance(RS) of AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs) is studied in the temperature range 300–500 K. By using the measured RSand both capacitance–voltage(C–V) an...The parasitic source resistance(RS) of AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs) is studied in the temperature range 300–500 K. By using the measured RSand both capacitance–voltage(C–V) and current–voltage(I–V) characteristics for the fabricated device at 300, 350, 400, 450, and 500 K, it is found that the polarization Coulomb field(PCF) scattering exhibits a significant impact on RSat the above-mentioned different temperatures. Furthermore, in the AlGaN/AlN/GaN HFETs, the interaction between the additional positive polarization charges underneath the gate contact and the additional negative polarization charges near the source Ohmic contact, which is related to the PCF scattering, is verified during the variable-temperature study of RS.展开更多
A version of Geant4 has been developed to treat high-energy proton radiography. This article presents the results of calculations simulating the effects of nuclear elastic scattering for various test step wedges. Comp...A version of Geant4 has been developed to treat high-energy proton radiography. This article presents the results of calculations simulating the effects of nuclear elastic scattering for various test step wedges. Comparisons with experimental data are also presented. The traditional expressions of the transmission should be correct if the angle distribution of the scattering is Gaussian multiple Coulomb scattering. The mean free path(which depends on the collimator angle) and the radiation length are treated as empirical parameters, according to transmission as a function of thickness obtained by simulations. The results can be used in density reconstruction, which depends on the transmission expressions.展开更多
The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in highenergy proton radiography.This article presents the principles of choosing the angle-cut aperture of the collimator...The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in highenergy proton radiography.This article presents the principles of choosing the angle-cut aperture of the collimator for different energies and objects.Numerical simulation using the Monte Carlo code Geant4 has been implemented to investigate the entire radiography for the French test object.The optimum angle-cut apertures of the collimators are also obtained for different energies.展开更多
Using the measured capacitance-voltage curves ofNi/Au Schottky contacts with different areas and the current-voltage characteristics for the A1GaAs/GaAs, A1GaN/A1N/GaN and InoAsA10.szN/A1N/GaN heterostructure field-ef...Using the measured capacitance-voltage curves ofNi/Au Schottky contacts with different areas and the current-voltage characteristics for the A1GaAs/GaAs, A1GaN/A1N/GaN and InoAsA10.szN/A1N/GaN heterostructure field-effect transistors (HFETs) at low drain-source voltage, the two-dimensional electron gas (2DEG) electron mobility for the prepared HFETs was calculated and analyzed. It was found that there is an obvious difference for the variation trend of the mobility curves between the Ⅲ-V nitride HFETs and the A1GaAs/GaAs HFETs. In the III-V nitride HFETs, the variation trend for the curves of the 2DEG electron mobility with the gate bias is closely related to the ratio of the gate length to the drainto-source distance. While the ratio of the gate length to the drainto-source distance has no effect on the variation trend for the curves of the 2DEG electron mobility with the gate bias in the A1GaAs/GaAs HFETs. The reason is attributed to the polarization Coulomb field scattering in the Ⅲ-V nitride HFETs.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11875274 and U1232202)。
文摘In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations.
基金Supported by Natural Science Foundation of China(11175182,11175180)
文摘In conventional research on beam gas coulomb scattering (BGCS), only the related beam lifetime using the analytical method is studied. In this paper, using the particle-in-cell Monte Carlo collisions (PIC-MCC) method, we not only simulated the beam lifetime but also explored the effect of BGCS on the beam distribution. In order to better estimate the effect on particle distribution, we study the ultra-low emittance electron beam. Here we choose the HeFei Advanced Light Source. By counting the lost particles in a certain time, the corresponding beam lifetime we simulated is 4.8482 h/13.8492 h in x/y, which is very close to the theoretic value (5.0555 h/13.7024 h in x/y). By counting the lost particles relative to the collided particles, the simulated value of the loss probability of collided particles is 1.3431e-04, which is also very close to the theoretical value (1.3824e-04). Besides, the simulation shows there is a tail in the transverse distribution due to the BGCS. The close match of the simulation with the theoretic value in beam lifetime and loss probability indicates our simulation is reliable.
基金Project supported by the National Natural Science Foundation of China(Nos.61306126,61306127,61106015)the CAS International Collaboration and Innovation Program on High Mobility Materials Engineering
文摘sSi/Si_(0.5)Ge_(0.5)/sSOI quantum-well(QW) p-MOSFETs with Hf O_2/Ti N gate stack were fabricated and characterized. According to the low temperature experimental results, carrier mobility of the strained Si_(0.5)Ge_(0.5)QW p-MOSFET was mainly governed by phonon scattering from 300 to 150 K and Coulomb scattering below150 K, respectively. Coulomb scattering was intensified by the accumulated inversion charges in the Si cap layer of this Si/Si Ge heterostructure, which led to a degradation of carrier mobility in the Si Ge channel, especially at low temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.61306113 and 11174182)
文摘Electron mobility scattering mechanism in AlN/GaN heterostuctures is investigated by temperature-dependent Hall measurement, and it is found that longitudinal optical phonon scattering dominates electron mobility near room temperature while the interface roughness scattering becomes the dominant carrier scattering mechanism at low temperatures (~ 100 K). Based on measured current-voltage characteristics of prepared rectangular AlN/GaN heterostructure field-effect transistor under different temperatures, the temperature-dependent variation of electron mobility under different gate biases is inves- tigated. The polarization Coulomb field (PCF) scattering is found to become an important carrier scattering mechanism after device processing under different temperatures. Moreover, it is found that the PCF scattering is not generated from the thermal stresses, but from the piezoelectric contribution induced by the electrical field in the thin A1N barrier layer. This is attributed to the large lattice mismatch between the extreme thinner AlN barrier layer and GaN, giving rise to a stronger converse piezoelectric effect.
基金supported by the National Natural Science Foundation of China(Grant Nos.61306113 and11174182)
文摘In this study rectangular AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs) with 22-nm and 12-nm AlGaN barrier layers are fabricated, respectively. Using the measured capacitance–voltage and current–voltage characteristics of the prepared devices with different Schottky areas, it is found that after processing the device, the polarization Coulomb field(PCF) scattering is induced and has an important influence on the two-dimensional electron gas electron mobility.Moreover, the influence of PCF scattering on the electron mobility is enhanced by reducing the AlGaN barrier thickness.This leads to the quite different variation of the electron mobility with gate bias when compared with the AlGaN barrier thickness. This mainly happens because the thinner AlGaN barrier layer suffers from a much stronger electrical field when applying a gate bias, which gives rise to a stronger converse piezoelectric effect.
基金Projected supported by the National Natural Science Foundation of China(Grant No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110131110005)
文摘By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.
基金Project supported by the National Natural Science Foundation of China (Grant No 60776016), the RGC of HKSAR, China (Grant No HKU7142/05E), and Open Foundation of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Grant No WUT2006M02).
文摘A physical model for mobility degradation by interface-roughness scattering and Coulomb scattering is proposed for SiGe p-MOSFET with a high-k dielectric/SiO2 gate stack. Impacts of the two kinds of scatterings on mobility degradation are investigated. Effects of interlayer (SiO2) thickness and permittivities of the high-k dielectric and interlayer on carrier mobility are also discussed. It is shown that a smooth interface between high-k dielectric and interlayer, as well as moderate permittivities of high-k dielectrics, is highly desired to improve carriers mobility while keeping alow equivalent oxide thickness. Simulated results agree reasonably with experimental data.
文摘A transport equation of momentum for relativistic electrons scattered isotropically was previously reported. Here, a momentum-transport equation for relativistic electrons “scattered anisotropically” by the Coulomb force is inquired into. An ideal plasma consisting of electrons and deuterons is treated again. Also, to raise a generation-ability of a thermionic energy converter, a means of introducing external electric and magnetic fields within “a converter in which an emitter plate and a collector plate face simply each other” is proposed.
基金supported by the National Natural Science Foundation of China(No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110131110005)
文摘Based on the measured capacitance–voltage(C–V) curves and current–voltage(I–V) curves for the prepared differently-sized AlN/GaN heterostructure field-effect transistors(HFETs), the I–V characteristics of the AlN/GaN HFETs were simulated using the quasi-two-dimensional(quasi-2D) model. By analyzing the variation in the electron mobility for the two-dimensional electron gas(2DEG) with the channel electric field, it is found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field(PCF) scattering. The 2DEG electron mobility difference is mostly caused by the PCF scattering which can reach up to 899.6 cm^2/(V·s)(sample a), 1307.4 cm^2/(V·s)(sample b),1561.7 cm^2/(V s)(sample c) and 678.1 cm^2/(V·s)(sample d), respectively. When the 2DEG sheet density is modulated by the drain–source bias, the electron mobility for samples a, b and c appear to peak with the variation of the 2DEG sheet density, but for sample d, no peak appears and the electron mobility rises with the increase in the2 DEG sheet density.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11174182)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110131110005)
文摘Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was found there is a significant difference between Schottky drain AlGaN/AlN/GaN HFETs and the control group both in drain series resistance and in two-dimensional electron gas (2DEG) electron mobility in the gate–drain channel. We attribute this to the different influence of Ohmic drain contacts and Schottky drain contacts on the strained AlGaN barrier layer. For conventional AlGaN/AlN/GaN HFETs, annealing drain Ohmic contacts gives rise to a strain variation in the AlGaN barrier layer between the gate contacts and the drain contacts, and results in strong polarization Coulomb field scattering in this region. In Schottky drain AlGaN/AlN/GaN HFETs, the strain in the AlGaN barrier layer is distributed more regularly.
基金supported by the National Natural Science Foundation of China (Grant No. 11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20110131110005)
文摘We simulate the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths using the quasi-two-dimensional (quasi-2D) model. The calculation results obtained using the modified mobility model are found to accord well with the experimental data. By analyzing the variation of the electron mobility for the two-dimensional electron gas (213EG) with the electric field in the linear region of the AlGaN/AlN/GaN HFET I-V output characteristics, it is found that the polarization Coulomb field scattering still plays an important role in the electron mobility of AlGaN/AlN/GaN HFETs at the higher drain voltage and channel electric field. As drain voltage and channel electric field increase, the 2DEG density reduces and the polarization Coulomb field scattering increases, as a result, the 2DEG electron mobility decreases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174182,11574182,and 61306113)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110131110005)
文摘The parasitic source resistance(RS) of AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs) is studied in the temperature range 300–500 K. By using the measured RSand both capacitance–voltage(C–V) and current–voltage(I–V) characteristics for the fabricated device at 300, 350, 400, 450, and 500 K, it is found that the polarization Coulomb field(PCF) scattering exhibits a significant impact on RSat the above-mentioned different temperatures. Furthermore, in the AlGaN/AlN/GaN HFETs, the interaction between the additional positive polarization charges underneath the gate contact and the additional negative polarization charges near the source Ohmic contact, which is related to the PCF scattering, is verified during the variable-temperature study of RS.
基金Supported by NSAF(11176001)Science and Technology Developing Foundation of China Academy of Engineering Physics(2012A0202006)
文摘A version of Geant4 has been developed to treat high-energy proton radiography. This article presents the results of calculations simulating the effects of nuclear elastic scattering for various test step wedges. Comparisons with experimental data are also presented. The traditional expressions of the transmission should be correct if the angle distribution of the scattering is Gaussian multiple Coulomb scattering. The mean free path(which depends on the collimator angle) and the radiation length are treated as empirical parameters, according to transmission as a function of thickness obtained by simulations. The results can be used in density reconstruction, which depends on the transmission expressions.
基金Supported by NSAF(11176001)Science and Technology Developing Foundation of China Academy of Engineering Physics(2012A0202006)
文摘The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in highenergy proton radiography.This article presents the principles of choosing the angle-cut aperture of the collimator for different energies and objects.Numerical simulation using the Monte Carlo code Geant4 has been implemented to investigate the entire radiography for the French test object.The optimum angle-cut apertures of the collimators are also obtained for different energies.
基金Project supported by the National Natural Science Foundation of China(No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110131110005)the Graduate Independent Innovation Foundation of Shandong University,GIIFSDU(No.yzc12064)
文摘Using the measured capacitance-voltage curves ofNi/Au Schottky contacts with different areas and the current-voltage characteristics for the A1GaAs/GaAs, A1GaN/A1N/GaN and InoAsA10.szN/A1N/GaN heterostructure field-effect transistors (HFETs) at low drain-source voltage, the two-dimensional electron gas (2DEG) electron mobility for the prepared HFETs was calculated and analyzed. It was found that there is an obvious difference for the variation trend of the mobility curves between the Ⅲ-V nitride HFETs and the A1GaAs/GaAs HFETs. In the III-V nitride HFETs, the variation trend for the curves of the 2DEG electron mobility with the gate bias is closely related to the ratio of the gate length to the drainto-source distance. While the ratio of the gate length to the drainto-source distance has no effect on the variation trend for the curves of the 2DEG electron mobility with the gate bias in the A1GaAs/GaAs HFETs. The reason is attributed to the polarization Coulomb field scattering in the Ⅲ-V nitride HFETs.