Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6...Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.展开更多
Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km a...Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.展开更多
After Mw 7.8 Nepal earthquake occurred, the rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. We present the calculations of the coseismic stress changes that resulted from the ...After Mw 7.8 Nepal earthquake occurred, the rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. We present the calculations of the coseismic stress changes that resulted from the 25th April event using models of regional faults designed according to south Tibet-Nepal structure, and show that some indicative significant stress increases. We calculate static stress changes caused by the displacement of a fault on which dislocations happen and an earthquake occurs. A Mw 7.3 earthquake broke on 12 May at a distance of - 130 km SEE of the Mw 7.8 earthquake, whose focus roughly located on high Coulomb stress change (CSC) site. Aftershocks (first 15 days after the mainshock) are associated with stress increase zone caused by the main rupture. We set receiver faults with specified strikes, dips, and rakes, on which the stresses imparted by the source fault are resolved. Four group normal faults to the north of the Nepal earthquake seismogenic fault were set as receiver faults and variant results followed. We provide a discussion on Coulomb stress transfer for the seismogenic fault, which is useful to identify potential future rupture zones.展开更多
On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoela...On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoelastic horizontal layer model,we calculate the viscoelastic co-seismic Coulomb stress change caused by the Yutian M_S7. 3 earthquakes 2008 and 2014 respectively. Based on the Coulomb stress change,using the calculation method of "direct "aftershock frequency,we come up with the theoretical earthquake frequency directly related to the mainshock and the co-seismic Coulomb stress change in the study area. Then we put forward a method,based on the comparison of theoretical and actual earthquake frequency or the comparison between theoretical and practical earthquake frequency-distance decay curve fitting residuals,to estimate the magnitude of a maximum sequent earthquake,directly related to the mainshock co-seismic Coulomb stress change. Results calculated by different methods show that the maximum follow-up earthquake magnitude caused by the coseismic Coulomb stress change lies from M_S7. 2 to M_S7. 5 following Yutian M_S7. 3 earthquake in 2008; but that of the 2014 Yutian M_S7. 3 earthquake is M_S6. 3. The former is very close to the Yutian M_S7. 3 earthquake in 2014.Because of the same magnitude,relatively close spatial distance,short time interval,the same region of the external force,the strong correlation between two seismic tectonic and a clear stress interaction,we thus consider that the two Yutian M_S7. 3 earthquakes in 2008 and 2014 constitute a pair of generalized double shock type earthquake. This is consistent with the sequence type characteristic of past "double shock"earthquakes in the region. In this paper,the influence of the magnitude lower limit and the b-value in the relationship of G-R on the results is discussed. As a result,when the viscoelastic coseismic Coulomb stress variation is determined,the lower limit of magnitude has little effect on the maximum sequent earthquake magnitude estimation,but b-value of G-R has a greater impact on the results.展开更多
Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on ...Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on the distribution of aftershocks and stress field, as well as the location of historical earthquakes, we analyze the Coulomb stress change triggered by the Taiwan Straits MS7.3 earthquake. The result shows that the static Coulomb stress change obtained by forward modeling based on the slip distribution model is quite consistent with the location of aftershocks in the areas far away from the epicenter. Ninety percent of aftershocks occurred in the stress increased areas. The Coulomb stress change is not entirely consistent with the distribution of aftershocks near the epicenter. It is found that Coulomb stress change can better reflect the aftershock distribution far away from the epicenter, while such corresponding relationship becomes quite complex near the epicenter. Through the calculation of the Coulomb stress change, we find that the stress increases in the southwest part of the Min-Yue (Fujian-Guangdong) coastal fault zone, which enhances the seismic activity. Therefore, it is deemed that the sea area between Nanpeng Island and Dongshan Island, where the Min-Yue coastal fault zone intersects with the NW-trending Shanghang-Dongshan fault, has a high seismic risk.展开更多
By the aftershock frequency estimation method based on the calculation of coseismic static Coulomb stress changes and rate-and state-dependent fault constitutive law,we calculate the frequency of "direct "af...By the aftershock frequency estimation method based on the calculation of coseismic static Coulomb stress changes and rate-and state-dependent fault constitutive law,we calculate the frequency of "direct "aftershocks of the Wenchuan earthquake related to coseismic static Coulomb stress changes in its aftershock zone and the areas nearby.It shows that the frequency is significantly lower than the truth in the main rupture zone,especially in the southern rupture zone,due to the decrease of stress level on the rupture plane of the main shock resulting from coseismic Coulomb stress change.The study also shows that the effect of the Coulomb stress change on the duration of aftershock activity is associated with the lower limit magnitude.The duration is about 15-16 months for aftershocks above ML4.0,and close to 60 months for aftershocks above ML3.5.In this period,the ratio of the"direct"aftershocks caused by coseismic Coulomb stress change ranges between 44.7% to48.6%,which suggests that,even in the "effective"period of coseismic Coulomb stress changes,about half of the aftershocks on the main shock rupture plane are independent of coseismic Coulomb stress changes.It is pointed out that those aftershocks may be related to the afterslip or the viscoelastic relaxation,which are time dependent cases.展开更多
The 1931 M_(w)7.8 Fuyun earthquake occurred around the Altai mountains, an intracontinental deformation belt with limited active strain-rate accumulation. To explore whether seismic activity in this deformation belt w...The 1931 M_(w)7.8 Fuyun earthquake occurred around the Altai mountains, an intracontinental deformation belt with limited active strain-rate accumulation. To explore whether seismic activity in this deformation belt was affected by stress interaction among different active faults, we calculate the Coulomb failure stress change(ΔCFS) induced by the Fuyun earthquake due to coseismic deformation of the elastic crust and postseismic viscoelastic relaxation of the lower crust and upper mantle. Numerical results show that the total ΔCFS at a 10-km depth produced by the Fuyun earthquake attains approximately 0.015-0.134 bar near the epicenter, and just before the occurrence of the 2003 M_(w)7.2 Chuya earthquake, which distances about 400 km away from the Fuyun earthquake. Among the increased ΔCFS,viscoelastic relaxation from 1931 to 2003 contributes to approximately 0.014-0.131 bar, accounting for>90% of the total ΔCFS. More importantly, we find that for the recorded seismicity in the region with a radius of about 270 km to the Fuyun earthquake from 1970 to 2018, the percentage of earthquakes that fall in positive lobes of ΔCFS resolved on the NNW-SSE Fuyun strike-slip fault, on the NWW-SEE Irtysh strike-slip fault, and on the NW-SE Kurti reverse fault is up to 67.22%-91.36%. Therefore, the predictedΔCFS suggests that the impact of the 1931 M_(w)7.8 Fuyun earthquake on seismic activity around the Altai mountains is still significant as to hasten occurrence of the 2003 M_(w)7.2 Chuya earthquake at a relatively far distance and to trigger its aftershocks in the near-field even after several decades of the mainshock.展开更多
On May 22 nd,2021,an MS7.4 earthquake occurred near the Maduo county of the Qinghai Province,China,within the Bayan Har Block.Seismic activities have been intense in this block,thus whether the Maduo Earthquake will b...On May 22 nd,2021,an MS7.4 earthquake occurred near the Maduo county of the Qinghai Province,China,within the Bayan Har Block.Seismic activities have been intense in this block,thus whether the Maduo Earthquake will bring subsequent seismic hazards to its surrounding regions raises wide concerns.In this paper,we first calculated the Coulomb failure stress changes caused by the Maduo Earthquake on nearby faults,and estimated how much these faults are brought closer or further from their next failures based on their stressing rates.Next,we combined the Coulomb failure stress changes with the rate-state frictional law to estimate the seismicity rate in the study region in the next decade.A declustered catalogue before the Maduo Earthquake was adopted to calculate background seismicity rate,and rate-state parameters are constrained by fault slip rates.Our results show that the Maduo Earthquake increases stress accumulations in the northwestern portion of the Qingshuihe fault(0.02 MPa at maximum),the two ends of the Kunlun Mountain Pass-Jiangcuo fault(0.01 MPa at maximum),and the northwestern portion of the Maduo-Gande fault(on average~0.09 MPa),and seismicity rates are expected to increase near these faults.What is especially worth noting is the seismic hazard in the region extending from the eastern end of the Kunlun Mountain Pass-Jiangcuo fault to the Maqin-Maqu seismic gap on the Eastern Kunlun fault,which is calculated to have experienced a maximum stress increase of 0.67 MPa after the Maduo Earthquake.On the other hand,stress accumulations are reduced in the southern end of the Elashan fault,the Eastern Kunlun fault segment to the west of Maduo,and the northwestern portion of the Dari fault.Seismic hazards are expected to be low in these regions.For the study region as a whole,the probability of an M≥6 earthquake taking place in the next decade is estimated to be 59%,about twice the value calculated for the time period before the Maduo Earthquake.展开更多
Since 231 B. C.,a total of 15 M6.0 - 7.5 earthquakes have been recorded in the west Beijing basin-range tectonic region( 38.3°- 41.5° E,112°- 116.2° N),a region mainly under the action of tensional...Since 231 B. C.,a total of 15 M6.0 - 7.5 earthquakes have been recorded in the west Beijing basin-range tectonic region( 38.3°- 41.5° E,112°- 116.2° N),a region mainly under the action of tensional normal faulting. In this paper,we calculate the Coulomb stress change of each earthquake and the cumulative Coulomb stress change,and on this basis we analyze the stress triggering of strong earthquakes. The research shows that there are 10 of 14 earthquakes that occurred in the trigger zones,in which the Coulomb stress change is positive,and the trigger rate is 71%. The positive areas of cumulative Coulomb stress change caused by these 15 earthquakes are: middle of northern Liulengshan fault,Northern Huaizhuo basin fault,Xinbaoan-Shacheng fault,Sangganhe fault and Southern Yuxian basin fault. This necessarily increases the seismic risk of these faults and can be used as a reference for future seismic risk analysis in this area.展开更多
We simulate accumulative Coulomb failure stress change in a layered Maxwell viscoelastic media in the northeastern Qinghai-Xizang (Tibetan) Plateau since 1920. Lithospheric stress/strain evolution is assumed to be d...We simulate accumulative Coulomb failure stress change in a layered Maxwell viscoelastic media in the northeastern Qinghai-Xizang (Tibetan) Plateau since 1920. Lithospheric stress/strain evolution is assumed to be driven by dislocations of large earthquakes (M≥7.0) and secular tectonic loading. The earthquake rupture parameters such as the fault rupture length, width, and slip are either adopted from field investigations or estimated from their statistic relationships with the earthquake magnitudes and seismic moments. Our study shows that among 20 large earthquakes (M≥7.0) investigated, 17 occurred in areas where the Coulomb failure stress change is positive, with a triggering rate of 85%. This study provides essential data for the intermediate to long-term likelihood estimation of large earthquakes in the northeastern Tibetan Plateau.展开更多
On May 22,2021,the M_(S)7.4 earthquake occurred in Madoi County,Qinghai Province;it was another strong event that occurred within the Bayan Har block after the Dari M_(S)7.7 earthquake in 1947.An earthquake is bound t...On May 22,2021,the M_(S)7.4 earthquake occurred in Madoi County,Qinghai Province;it was another strong event that occurred within the Bayan Har block after the Dari M_(S)7.7 earthquake in 1947.An earthquake is bound to cast stress to the surrounding faults,thus affecting the regional seismic hazard.To understand these issues,a three-dimensional viscoelastic finite element model of the eastern Bayan Har block and its adjacent areas was constructed.Based on the co-seismic rupture model of the Madoi earthquake,we analyzed the co-and postseismic Coulomb stress change caused by the Madoi earthquake on the surrounding major faults.The results show that the Madoi earthquake caused significant co-seismic stress increases in the Tuosuo Lake and Maqin-Maqu segments of the East Kunlun fault(>10 kPa),which exceeded the proposed threshold of stress triggering.By integrating the accumulation rate of the inter-seismic tectonic stress,we conclude that the Madoi earthquake caused future strong earthquakes in the Tuosuo Lake and Maqin-Maqu segments of the East Kunlun fault to advance by 55.6-623 and 24.7-123 a,respectively.Combined with the influence of the Madoi earthquake and the elapsed time of the last strong earthquake,these two segments have approached or even exceeded the recurrence interval of the fault prescribed by previous research.In the future,it is necessary to focus greater attention on the seismic hazard of the Maqin-Maqu and Tuosuo Lake segments.This study provides a mechanical reference to understand the seismic hazard of the East Kunlun fault in the future,particularly to determine the seismic potential region.展开更多
Laboratory experiments and numerical simulations on rock friction perturbations,an important means for understanding the mechanism and influencing factors of stress-triggered earthquakes,are of great significance for ...Laboratory experiments and numerical simulations on rock friction perturbations,an important means for understanding the mechanism and influencing factors of stress-triggered earthquakes,are of great significance for studying earthquake mechanisms and earthquake hazard analysis.We reviews the experiments and numerical simulations on the effects of stress perturbations on fault slip,and the results show that stress perturbations can change fault stress and trigger earthquakes.The Coulomb failure criterion can shed light on some questions about stress-triggering earthquakes but cannot explain the time dependence of earthquake triggering nor be used to investigate the effect of heterogeneous stress perturbations.The amplitude and period are important factors affecting the correlation between stress perturbation and fault instability.The effect of the perturbation period on fault instability is still controversial,and the effect of the high-frequency perturbation on earthquakes may be underestimated.Normal and shear stress perturbation can trigger fault instability,but their effects on fault slip differ.It is necessary to distinguish whether the stress perturbation is dominated by shear or normal stress change when it triggers fault instability.Fault tectonic stress plays a decisive effect on the mode of fault instability and earthquake magnitude.Acoustic emission activity can reflect the changes in fault stress and the progression of fault nucleation,and identify the meta-instability stage and precursor of fault instability,providing a reference for earthquake prediction.展开更多
We studied the seismicity before and after the M_s=7.8 Tangshan event on July 28, 1976 (39°28'N, 1 18° 11'E) and the results show that in 3 regions outside of the source zone, seismicity rate increas...We studied the seismicity before and after the M_s=7.8 Tangshan event on July 28, 1976 (39°28'N, 1 18° 11'E) and the results show that in 3 regions outside of the source zone, seismicity rate increasing were observed, which was significant in 0.99 significance level using Z-statistic test and was proposed to be triggered by the M_s=7.8 Tangshan earthquake. The magnitude of the greatest triggered event was 5.5. The epicenter distances of these earthquakes were several ten kilometers to 300 km. The static stress change △CFS of Coulomb failure was calculated using an elastic dislocation model in half space and the △CFS on the major rupture directions in these three regions were positive.展开更多
The 2022 M_(W)6.7 Menyuan earthquake ruptured the western end of the Tianzhu seismic gap,providing an opportunity to study the regional seismogenic characteristics and seismic hazards.Here we use interferometric synth...The 2022 M_(W)6.7 Menyuan earthquake ruptured the western end of the Tianzhu seismic gap,providing an opportunity to study the regional seismogenic characteristics and seismic hazards.Here we use interferometric synthetic aperture radar(InSAR)and seismic data to study the mainshock rupture,early afterslip and the second largest aftershock of the 2022 Menyuan earthquake sequences.Our modeling results show that the mainshock ruptured the Lenglongling fault and the Tuolaishan fault with a maximum slip of~3 m.Rapid postseismic transient deformation occurred at the center of the Lenglongling fault.Our afterslip modeling reveals that the majority of afterslip occurred in the deeper part of the Lenglongling fault.A high-angle conjugated faulting event is found at the middle section of the Lenglongling fault.We use the stress inversion to investigate the possible triggering mechanism of the conjugated rupture event.The results indicate the maximum principal stress direction is in~222°,forming a~22°angle between the conjugated fault of second largest aftershock and the mainshock.The calculated normal stress changes indicate the region is within a pull-apart stress field,which favors such a conjugated rupturing event.Our study will help understand the rupture behavior of such kind of conjugated fault in other regions.展开更多
This paper calculates the static Coulomb stress changes generated by four earthquakes in the Yutian area during 2008 ~ 2014 separately,then discusses the triggering influence,their accumulated Coulomb stress changes a...This paper calculates the static Coulomb stress changes generated by four earthquakes in the Yutian area during 2008 ~ 2014 separately,then discusses the triggering influence,their accumulated Coulomb stress changes and their influence on nearby faults.The results indicate that the M S5.5 earthquake in 2011 and the M_S7.3 earthquake in 2014 are both in the regions where the Coulomb stress change is positive,the stress changes are 0.004 MPa and 0.021 MPa, respectively, meaning they are triggered by prior earthquakes.The M S6.2 earthquake in 2012 occurred in the place where Coulomb stress change was negative,so it is postponed by the prior earthquakes.The image of Coulomb stress changes of the M S7.3 earthquake in 2014 is in accord with aftershocks( M L≥ 3.0)distribution,but some regions on the fault where the Coulomb stress change is positive have few aftershocks,and strong aftershocks may occur at these districts in future.In addition,this paper calculates the Coulomb stress change on nearby faults,and finds that the Coulomb stress changes of different elements in the GGC fault are very different,and must receive strong triggered-influence,though the result may be influenced by the input finite fault model,so there is still a large earthquake-risk.The GGN,PLC,PLW and LBW faults were also triggered by the four earthquakes occurring between 2008 ~ 2014.Their maximum Coulomb stress changes all exceed 0.002 MPa,so they also have a strong earthquake hazard.展开更多
This paper calculates the static stress changes generated by the Yushu M_S 7. 1 earthquake in Qinghai Province. On the basis of regional stress,we take account of the static stress change triggered by the Yushu M_S 7....This paper calculates the static stress changes generated by the Yushu M_S 7. 1 earthquake in Qinghai Province. On the basis of regional stress,we take account of the static stress change triggered by the Yushu M_S 7. 1 earthquake to find the optimally oriented fault planes,then calculate the Coulomb stress change on the optimally oriented fault plane. The results indicate that most of the aftershocks are triggered by the mainshock. The image of Coulomb stress changes is also in accord with regional earthquakes ( M_L ≥3. 0 ) distribution,but the value is lower than 0. 01MPa. In addition,this paper calculates the Coulomb stress changes in the case that the aftershock fault plane is the same as the main shock. Through comparison,we find that the image of Coulomb stress changes obtained using the "optimally oriented fault"approach is more consistent with the distribution of Yushu aftershocks and regional earthquakes.展开更多
Most strong earthquakes have complex rupture processes. As an approximation, each earthquake can be described as two or more subevents of rupture with time interval of several seconds to several days. In order to disc...Most strong earthquakes have complex rupture processes. As an approximation, each earthquake can be described as two or more subevents of rupture with time interval of several seconds to several days. In order to discuss the relationship between different subevents, we investigated the rupture process of the 1966 Xingtai, the 1976 Tangshan, the 1990 Gonghe and the 1996 Lijiang earthquake by calculating the static Coulomb failure stress changes produced by the first subevent. The calculation of static stress changes produced by fault slip is based on the formulation of Okada (1992). The result suggests that the static Coulomb failure stress changes (ΔCFS) produced by the first subevent have 'triggering' effect on the subsequent subevents which locate in the region where the Coulomb stress change produced by the first event is positive, with the order of magnitude 10-2 [similar to] 10-1 MPa.展开更多
Fault interaction and earthquake occurrence have attracted much attention in seismological community during recent years. Many studies have shown that the rupture of one fault could encourage or discourage earthquake ...Fault interaction and earthquake occurrence have attracted much attention in seismological community during recent years. Many studies have shown that the rupture of one fault could encourage or discourage earthquake nucleation on a neighboring fault, depending on the relative geometry of the two faults and the earthquake rupture mechanisms. In this paper, we simulate the evolutionary process of cumulative Coulomb failure stress change ( CCFSC ) in North China since 1303, manifested by secular tectonic stress loading and occurrence of large earthquakes. Secular tectonic stress loading is averaged from crustal strain rates derived from GPS. Fault rupture parameters of historical earthquakes are estimated as follows: the earthquake rupture length and the amount of slip are derived based on their statistical relationships with the earthquake intensity distribution and magnitude, calibrated using parameters of instrumentally measured contemporary earthquakes. The earthquake rake angle is derived based on geologically determined fault orientational parameters and seismically estimated orientation of regional tectonic stresses. Assuming a layered visco-elastic medium, we calculate stress evolution resulting from secular tectonic loading and coseismic and postseismic deformation. On the eve of each large earthquake, the accumulated stress field is projected to the fault surface of that earthquake and the CCFSC is evaluated to assess the triggering effect of CCFSC. Forty-nine earthquakes with M≥6.5 have occurred in North China since 1303. Statistics shows that 39 out of the 48 subsequent events were triggered by positive CCFSC, yielding a triggering rate of 81.3%. If we use the accumulative stress field to evaluate the CCFSC for the M ≥ 5.0 earthquakes that occurred in North China since 1303, we find that 75.5% of those events were triggered. The triggering rate for the M ≥ 5.0 earthquakes after the 1976 Ninghe earthquake is up to 82.1%. The triggering rates can be higher if corrections are made for some aftershocks which were wrongly identified as occurring in stress shadow zones because of errors in parameter estimates of historical earthquakes. Our study shows a very high correlation between positive CCFSC and earthquake occurrences. Relatively high CCFSC in North China at present is concentrated around the Bohai Sea, the west segment of the Northern Qinling fault, the western end of the Zhangjiakou-Bohai Sea seismic zone, and the shiyuan basin, Shanxi graben, suggesting relatively higher earthquake potential in these areas.展开更多
This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of visc...This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of viscoelastic model in seismic stress triggering, the relation between earthquake triggering and volcanic eruption or explosion, other explanation of earthquake triggering, etc. And some suggestions for further study on seismic stress triggering in near future are given.展开更多
The Bachu-Jiashi earthquake of MS6.8 occurred on February 24,2003,about 20km from the southeast of the 1997~1998 Jiashi seismic region in Xinjiang,and its aftershocks are rich and strong.Did the 1997~1998 Jiashi str...The Bachu-Jiashi earthquake of MS6.8 occurred on February 24,2003,about 20km from the southeast of the 1997~1998 Jiashi seismic region in Xinjiang,and its aftershocks are rich and strong.Did the 1997~1998 Jiashi strong earthquake swarm trigger the Bachu-Jiashi MS6.8 earthquake? The Atushi earthquake of MS6.7 occurred in 1996,and the 1997~1998 Jiashi strong earthquake swarm occurred about 70km from the Atushi earthquake 10 months later.Did the Atushi earthquake of M-S6.7 encourage the 1997~1998 Jiashi strong earthquake swarm? There were 9 earthquakes with M-S6.0 from 1996 to 1997 in the Jiashi seismic region,how did they act on each other? To answer the above questions,the article studies the triggering effect of the activity process of the whole Jiashi earthquake swarm from the 1996 Atushi earthquake of M-S6.7,the 1997~1998 Jiashi strong swarm to the 2003 Bachu-Jiashi earthquake of M-S6.8,and analyzes the seismicity characteristics around the Jiashi region.The results show that the 1996 Atushi earthquake of M-S6.7 encouraged the 1997~1998 Jiashi strong swarm to some extent,the accumulative Coulomb stress change from the previous M-6.0 earthquakes of the Jiashi strong swarm had certain triggering effects on the following M-6.0 events,and the Coulomb stress change converted from the Jiashi strong swarm strongly encouraged the 2003 Bachu-Jiashi earthquake with M-S6.8.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant No.sU2139205,41774011,41874011)the National Key Research and Development Program of China(Grant No.2018YFC1503605)。
文摘Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.
基金This study was supported financially by the National Key R&D Program of China(No.2018YFC1503704)the National Natural Science Foundation of China(No.41874003)。
文摘Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.
基金supported by the International Cooperation and Exchange Program(Grant 41461164004)General Program(Grant 41174004)of National Natural Science Foundation of China+2 种基金the National International Science and Technology Cooperation Project(Grant 2015DFR21100)the Basic Research Fund Division Mission(Grant 2015IES0305)the Basic Research Project(Grant 2014IES010102)of Institute of Earthquake Science,China Earthquake Administration
文摘After Mw 7.8 Nepal earthquake occurred, the rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. We present the calculations of the coseismic stress changes that resulted from the 25th April event using models of regional faults designed according to south Tibet-Nepal structure, and show that some indicative significant stress increases. We calculate static stress changes caused by the displacement of a fault on which dislocations happen and an earthquake occurs. A Mw 7.3 earthquake broke on 12 May at a distance of - 130 km SEE of the Mw 7.8 earthquake, whose focus roughly located on high Coulomb stress change (CSC) site. Aftershocks (first 15 days after the mainshock) are associated with stress increase zone caused by the main rupture. We set receiver faults with specified strikes, dips, and rakes, on which the stresses imparted by the source fault are resolved. Four group normal faults to the north of the Nepal earthquake seismogenic fault were set as receiver faults and variant results followed. We provide a discussion on Coulomb stress transfer for the seismogenic fault, which is useful to identify potential future rupture zones.
基金sponsored by the Scientific Research Fund of the Department of Earthquake Monitoring and Prediction,CEA
文摘On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoelastic horizontal layer model,we calculate the viscoelastic co-seismic Coulomb stress change caused by the Yutian M_S7. 3 earthquakes 2008 and 2014 respectively. Based on the Coulomb stress change,using the calculation method of "direct "aftershock frequency,we come up with the theoretical earthquake frequency directly related to the mainshock and the co-seismic Coulomb stress change in the study area. Then we put forward a method,based on the comparison of theoretical and actual earthquake frequency or the comparison between theoretical and practical earthquake frequency-distance decay curve fitting residuals,to estimate the magnitude of a maximum sequent earthquake,directly related to the mainshock co-seismic Coulomb stress change. Results calculated by different methods show that the maximum follow-up earthquake magnitude caused by the coseismic Coulomb stress change lies from M_S7. 2 to M_S7. 5 following Yutian M_S7. 3 earthquake in 2008; but that of the 2014 Yutian M_S7. 3 earthquake is M_S6. 3. The former is very close to the Yutian M_S7. 3 earthquake in 2014.Because of the same magnitude,relatively close spatial distance,short time interval,the same region of the external force,the strong correlation between two seismic tectonic and a clear stress interaction,we thus consider that the two Yutian M_S7. 3 earthquakes in 2008 and 2014 constitute a pair of generalized double shock type earthquake. This is consistent with the sequence type characteristic of past "double shock"earthquakes in the region. In this paper,the influence of the magnitude lower limit and the b-value in the relationship of G-R on the results is discussed. As a result,when the viscoelastic coseismic Coulomb stress variation is determined,the lower limit of magnitude has little effect on the maximum sequent earthquake magnitude estimation,but b-value of G-R has a greater impact on the results.
基金sponsored jointly by the National Natural Science Foundation of China(U0933006),National Natural Science Foundation of China(41006030,41176054)the Special Research Program(908Program)of Guangdong Province(GD908-JC-03,GD908-JC-10)
文摘Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on the distribution of aftershocks and stress field, as well as the location of historical earthquakes, we analyze the Coulomb stress change triggered by the Taiwan Straits MS7.3 earthquake. The result shows that the static Coulomb stress change obtained by forward modeling based on the slip distribution model is quite consistent with the location of aftershocks in the areas far away from the epicenter. Ninety percent of aftershocks occurred in the stress increased areas. The Coulomb stress change is not entirely consistent with the distribution of aftershocks near the epicenter. It is found that Coulomb stress change can better reflect the aftershock distribution far away from the epicenter, while such corresponding relationship becomes quite complex near the epicenter. Through the calculation of the Coulomb stress change, we find that the stress increases in the southwest part of the Min-Yue (Fujian-Guangdong) coastal fault zone, which enhances the seismic activity. Therefore, it is deemed that the sea area between Nanpeng Island and Dongshan Island, where the Min-Yue coastal fault zone intersects with the NW-trending Shanghang-Dongshan fault, has a high seismic risk.
基金funded by the special project of the National Science&Technology Pillar Program during the Twelfth "Five-year Plan" Period(2012BAK19B02-05-02)
文摘By the aftershock frequency estimation method based on the calculation of coseismic static Coulomb stress changes and rate-and state-dependent fault constitutive law,we calculate the frequency of "direct "aftershocks of the Wenchuan earthquake related to coseismic static Coulomb stress changes in its aftershock zone and the areas nearby.It shows that the frequency is significantly lower than the truth in the main rupture zone,especially in the southern rupture zone,due to the decrease of stress level on the rupture plane of the main shock resulting from coseismic Coulomb stress change.The study also shows that the effect of the Coulomb stress change on the duration of aftershock activity is associated with the lower limit magnitude.The duration is about 15-16 months for aftershocks above ML4.0,and close to 60 months for aftershocks above ML3.5.In this period,the ratio of the"direct"aftershocks caused by coseismic Coulomb stress change ranges between 44.7% to48.6%,which suggests that,even in the "effective"period of coseismic Coulomb stress changes,about half of the aftershocks on the main shock rupture plane are independent of coseismic Coulomb stress changes.It is pointed out that those aftershocks may be related to the afterslip or the viscoelastic relaxation,which are time dependent cases.
基金supported by the Natural Science Foundation of China(No.42120104004)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0708)。
文摘The 1931 M_(w)7.8 Fuyun earthquake occurred around the Altai mountains, an intracontinental deformation belt with limited active strain-rate accumulation. To explore whether seismic activity in this deformation belt was affected by stress interaction among different active faults, we calculate the Coulomb failure stress change(ΔCFS) induced by the Fuyun earthquake due to coseismic deformation of the elastic crust and postseismic viscoelastic relaxation of the lower crust and upper mantle. Numerical results show that the total ΔCFS at a 10-km depth produced by the Fuyun earthquake attains approximately 0.015-0.134 bar near the epicenter, and just before the occurrence of the 2003 M_(w)7.2 Chuya earthquake, which distances about 400 km away from the Fuyun earthquake. Among the increased ΔCFS,viscoelastic relaxation from 1931 to 2003 contributes to approximately 0.014-0.131 bar, accounting for>90% of the total ΔCFS. More importantly, we find that for the recorded seismicity in the region with a radius of about 270 km to the Fuyun earthquake from 1970 to 2018, the percentage of earthquakes that fall in positive lobes of ΔCFS resolved on the NNW-SSE Fuyun strike-slip fault, on the NWW-SEE Irtysh strike-slip fault, and on the NW-SE Kurti reverse fault is up to 67.22%-91.36%. Therefore, the predictedΔCFS suggests that the impact of the 1931 M_(w)7.8 Fuyun earthquake on seismic activity around the Altai mountains is still significant as to hasten occurrence of the 2003 M_(w)7.2 Chuya earthquake at a relatively far distance and to trigger its aftershocks in the near-field even after several decades of the mainshock.
基金supported by the National Key R&D Program of China(Grant No.2017YFC1500305)the National Natural Science Foundation of China(Grant Nos.41731072,41574095)。
文摘On May 22 nd,2021,an MS7.4 earthquake occurred near the Maduo county of the Qinghai Province,China,within the Bayan Har Block.Seismic activities have been intense in this block,thus whether the Maduo Earthquake will bring subsequent seismic hazards to its surrounding regions raises wide concerns.In this paper,we first calculated the Coulomb failure stress changes caused by the Maduo Earthquake on nearby faults,and estimated how much these faults are brought closer or further from their next failures based on their stressing rates.Next,we combined the Coulomb failure stress changes with the rate-state frictional law to estimate the seismicity rate in the study region in the next decade.A declustered catalogue before the Maduo Earthquake was adopted to calculate background seismicity rate,and rate-state parameters are constrained by fault slip rates.Our results show that the Maduo Earthquake increases stress accumulations in the northwestern portion of the Qingshuihe fault(0.02 MPa at maximum),the two ends of the Kunlun Mountain Pass-Jiangcuo fault(0.01 MPa at maximum),and the northwestern portion of the Maduo-Gande fault(on average~0.09 MPa),and seismicity rates are expected to increase near these faults.What is especially worth noting is the seismic hazard in the region extending from the eastern end of the Kunlun Mountain Pass-Jiangcuo fault to the Maqin-Maqu seismic gap on the Eastern Kunlun fault,which is calculated to have experienced a maximum stress increase of 0.67 MPa after the Maduo Earthquake.On the other hand,stress accumulations are reduced in the southern end of the Elashan fault,the Eastern Kunlun fault segment to the west of Maduo,and the northwestern portion of the Dari fault.Seismic hazards are expected to be low in these regions.For the study region as a whole,the probability of an M≥6 earthquake taking place in the next decade is estimated to be 59%,about twice the value calculated for the time period before the Maduo Earthquake.
基金sponsored by the Basic Science Research Program of Institute of Earthquake Science,ERC(0210240204)
文摘Since 231 B. C.,a total of 15 M6.0 - 7.5 earthquakes have been recorded in the west Beijing basin-range tectonic region( 38.3°- 41.5° E,112°- 116.2° N),a region mainly under the action of tensional normal faulting. In this paper,we calculate the Coulomb stress change of each earthquake and the cumulative Coulomb stress change,and on this basis we analyze the stress triggering of strong earthquakes. The research shows that there are 10 of 14 earthquakes that occurred in the trigger zones,in which the Coulomb stress change is positive,and the trigger rate is 71%. The positive areas of cumulative Coulomb stress change caused by these 15 earthquakes are: middle of northern Liulengshan fault,Northern Huaizhuo basin fault,Xinbaoan-Shacheng fault,Sangganhe fault and Southern Yuxian basin fault. This necessarily increases the seismic risk of these faults and can be used as a reference for future seismic risk analysis in this area.
基金National Natural Science Foundation of China(40374012 and 40334042)State Key Fundamental Research De-velopment Plan Project(2001CB711005)
文摘We simulate accumulative Coulomb failure stress change in a layered Maxwell viscoelastic media in the northeastern Qinghai-Xizang (Tibetan) Plateau since 1920. Lithospheric stress/strain evolution is assumed to be driven by dislocations of large earthquakes (M≥7.0) and secular tectonic loading. The earthquake rupture parameters such as the fault rupture length, width, and slip are either adopted from field investigations or estimated from their statistic relationships with the earthquake magnitudes and seismic moments. Our study shows that among 20 large earthquakes (M≥7.0) investigated, 17 occurred in areas where the Coulomb failure stress change is positive, with a triggering rate of 85%. This study provides essential data for the intermediate to long-term likelihood estimation of large earthquakes in the northeastern Tibetan Plateau.
基金supported by the National Natural Science Foundation of China(under grants 41874116, 41904007)Science for Earthquake Resilience of China Earthquake Administ (XH20083).
文摘On May 22,2021,the M_(S)7.4 earthquake occurred in Madoi County,Qinghai Province;it was another strong event that occurred within the Bayan Har block after the Dari M_(S)7.7 earthquake in 1947.An earthquake is bound to cast stress to the surrounding faults,thus affecting the regional seismic hazard.To understand these issues,a three-dimensional viscoelastic finite element model of the eastern Bayan Har block and its adjacent areas was constructed.Based on the co-seismic rupture model of the Madoi earthquake,we analyzed the co-and postseismic Coulomb stress change caused by the Madoi earthquake on the surrounding major faults.The results show that the Madoi earthquake caused significant co-seismic stress increases in the Tuosuo Lake and Maqin-Maqu segments of the East Kunlun fault(>10 kPa),which exceeded the proposed threshold of stress triggering.By integrating the accumulation rate of the inter-seismic tectonic stress,we conclude that the Madoi earthquake caused future strong earthquakes in the Tuosuo Lake and Maqin-Maqu segments of the East Kunlun fault to advance by 55.6-623 and 24.7-123 a,respectively.Combined with the influence of the Madoi earthquake and the elapsed time of the last strong earthquake,these two segments have approached or even exceeded the recurrence interval of the fault prescribed by previous research.In the future,it is necessary to focus greater attention on the seismic hazard of the Maqin-Maqu and Tuosuo Lake segments.This study provides a mechanical reference to understand the seismic hazard of the East Kunlun fault in the future,particularly to determine the seismic potential region.
基金This work is supported by the National Natural Science Foundation of China(U1839211)the Spark Program of Earthquake Science and Technology(XH20044)the State Key Laboratory of Earthquake Dynamics(No.LED2018B06).
文摘Laboratory experiments and numerical simulations on rock friction perturbations,an important means for understanding the mechanism and influencing factors of stress-triggered earthquakes,are of great significance for studying earthquake mechanisms and earthquake hazard analysis.We reviews the experiments and numerical simulations on the effects of stress perturbations on fault slip,and the results show that stress perturbations can change fault stress and trigger earthquakes.The Coulomb failure criterion can shed light on some questions about stress-triggering earthquakes but cannot explain the time dependence of earthquake triggering nor be used to investigate the effect of heterogeneous stress perturbations.The amplitude and period are important factors affecting the correlation between stress perturbation and fault instability.The effect of the perturbation period on fault instability is still controversial,and the effect of the high-frequency perturbation on earthquakes may be underestimated.Normal and shear stress perturbation can trigger fault instability,but their effects on fault slip differ.It is necessary to distinguish whether the stress perturbation is dominated by shear or normal stress change when it triggers fault instability.Fault tectonic stress plays a decisive effect on the mode of fault instability and earthquake magnitude.Acoustic emission activity can reflect the changes in fault stress and the progression of fault nucleation,and identify the meta-instability stage and precursor of fault instability,providing a reference for earthquake prediction.
文摘We studied the seismicity before and after the M_s=7.8 Tangshan event on July 28, 1976 (39°28'N, 1 18° 11'E) and the results show that in 3 regions outside of the source zone, seismicity rate increasing were observed, which was significant in 0.99 significance level using Z-statistic test and was proposed to be triggered by the M_s=7.8 Tangshan earthquake. The magnitude of the greatest triggered event was 5.5. The epicenter distances of these earthquakes were several ten kilometers to 300 km. The static stress change △CFS of Coulomb failure was calculated using an elastic dislocation model in half space and the △CFS on the major rupture directions in these three regions were positive.
基金the National Science Fund for Distinguished Young Scholars(No.41925016)National Key Research and Development Program(No.2022YFB3903602)+1 种基金National Natural Science Foundation of China(No.42174023)the Frontier Cross Research Project of Central South University(No.2023QYJC006).
文摘The 2022 M_(W)6.7 Menyuan earthquake ruptured the western end of the Tianzhu seismic gap,providing an opportunity to study the regional seismogenic characteristics and seismic hazards.Here we use interferometric synthetic aperture radar(InSAR)and seismic data to study the mainshock rupture,early afterslip and the second largest aftershock of the 2022 Menyuan earthquake sequences.Our modeling results show that the mainshock ruptured the Lenglongling fault and the Tuolaishan fault with a maximum slip of~3 m.Rapid postseismic transient deformation occurred at the center of the Lenglongling fault.Our afterslip modeling reveals that the majority of afterslip occurred in the deeper part of the Lenglongling fault.A high-angle conjugated faulting event is found at the middle section of the Lenglongling fault.We use the stress inversion to investigate the possible triggering mechanism of the conjugated rupture event.The results indicate the maximum principal stress direction is in~222°,forming a~22°angle between the conjugated fault of second largest aftershock and the mainshock.The calculated normal stress changes indicate the region is within a pull-apart stress field,which favors such a conjugated rupturing event.Our study will help understand the rupture behavior of such kind of conjugated fault in other regions.
基金funded by the National Key Technology R&D Program of China(2012BAK19B02)
文摘This paper calculates the static Coulomb stress changes generated by four earthquakes in the Yutian area during 2008 ~ 2014 separately,then discusses the triggering influence,their accumulated Coulomb stress changes and their influence on nearby faults.The results indicate that the M S5.5 earthquake in 2011 and the M_S7.3 earthquake in 2014 are both in the regions where the Coulomb stress change is positive,the stress changes are 0.004 MPa and 0.021 MPa, respectively, meaning they are triggered by prior earthquakes.The M S6.2 earthquake in 2012 occurred in the place where Coulomb stress change was negative,so it is postponed by the prior earthquakes.The image of Coulomb stress changes of the M S7.3 earthquake in 2014 is in accord with aftershocks( M L≥ 3.0)distribution,but some regions on the fault where the Coulomb stress change is positive have few aftershocks,and strong aftershocks may occur at these districts in future.In addition,this paper calculates the Coulomb stress change on nearby faults,and finds that the Coulomb stress changes of different elements in the GGC fault are very different,and must receive strong triggered-influence,though the result may be influenced by the input finite fault model,so there is still a large earthquake-risk.The GGN,PLC,PLW and LBW faults were also triggered by the four earthquakes occurring between 2008 ~ 2014.Their maximum Coulomb stress changes all exceed 0.002 MPa,so they also have a strong earthquake hazard.
基金sponsored by the National Key Technology R&D Program,China (2008BAC38B03-01)
文摘This paper calculates the static stress changes generated by the Yushu M_S 7. 1 earthquake in Qinghai Province. On the basis of regional stress,we take account of the static stress change triggered by the Yushu M_S 7. 1 earthquake to find the optimally oriented fault planes,then calculate the Coulomb stress change on the optimally oriented fault plane. The results indicate that most of the aftershocks are triggered by the mainshock. The image of Coulomb stress changes is also in accord with regional earthquakes ( M_L ≥3. 0 ) distribution,but the value is lower than 0. 01MPa. In addition,this paper calculates the Coulomb stress changes in the case that the aftershock fault plane is the same as the main shock. Through comparison,we find that the image of Coulomb stress changes obtained using the "optimally oriented fault"approach is more consistent with the distribution of Yushu aftershocks and regional earthquakes.
基金State Natural Science Foundation of China (49725410) and the Project "973
文摘Most strong earthquakes have complex rupture processes. As an approximation, each earthquake can be described as two or more subevents of rupture with time interval of several seconds to several days. In order to discuss the relationship between different subevents, we investigated the rupture process of the 1966 Xingtai, the 1976 Tangshan, the 1990 Gonghe and the 1996 Lijiang earthquake by calculating the static Coulomb failure stress changes produced by the first subevent. The calculation of static stress changes produced by fault slip is based on the formulation of Okada (1992). The result suggests that the static Coulomb failure stress changes (ΔCFS) produced by the first subevent have 'triggering' effect on the subsequent subevents which locate in the region where the Coulomb stress change produced by the first event is positive, with the order of magnitude 10-2 [similar to] 10-1 MPa.
基金This project was sponsored by the National ScienceFoundation (40374012) .
文摘Fault interaction and earthquake occurrence have attracted much attention in seismological community during recent years. Many studies have shown that the rupture of one fault could encourage or discourage earthquake nucleation on a neighboring fault, depending on the relative geometry of the two faults and the earthquake rupture mechanisms. In this paper, we simulate the evolutionary process of cumulative Coulomb failure stress change ( CCFSC ) in North China since 1303, manifested by secular tectonic stress loading and occurrence of large earthquakes. Secular tectonic stress loading is averaged from crustal strain rates derived from GPS. Fault rupture parameters of historical earthquakes are estimated as follows: the earthquake rupture length and the amount of slip are derived based on their statistical relationships with the earthquake intensity distribution and magnitude, calibrated using parameters of instrumentally measured contemporary earthquakes. The earthquake rake angle is derived based on geologically determined fault orientational parameters and seismically estimated orientation of regional tectonic stresses. Assuming a layered visco-elastic medium, we calculate stress evolution resulting from secular tectonic loading and coseismic and postseismic deformation. On the eve of each large earthquake, the accumulated stress field is projected to the fault surface of that earthquake and the CCFSC is evaluated to assess the triggering effect of CCFSC. Forty-nine earthquakes with M≥6.5 have occurred in North China since 1303. Statistics shows that 39 out of the 48 subsequent events were triggered by positive CCFSC, yielding a triggering rate of 81.3%. If we use the accumulative stress field to evaluate the CCFSC for the M ≥ 5.0 earthquakes that occurred in North China since 1303, we find that 75.5% of those events were triggered. The triggering rate for the M ≥ 5.0 earthquakes after the 1976 Ninghe earthquake is up to 82.1%. The triggering rates can be higher if corrections are made for some aftershocks which were wrongly identified as occurring in stress shadow zones because of errors in parameter estimates of historical earthquakes. Our study shows a very high correlation between positive CCFSC and earthquake occurrences. Relatively high CCFSC in North China at present is concentrated around the Bohai Sea, the west segment of the Northern Qinling fault, the western end of the Zhangjiakou-Bohai Sea seismic zone, and the shiyuan basin, Shanxi graben, suggesting relatively higher earthquake potential in these areas.
基金Chinese Joint Seismological Science Foundation (602005).
文摘This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of viscoelastic model in seismic stress triggering, the relation between earthquake triggering and volcanic eruption or explosion, other explanation of earthquake triggering, etc. And some suggestions for further study on seismic stress triggering in near future are given.
基金The research was jointly supported by Science and Technology R&D Program of Xinjiang (200333116)the National 10th"Five-Year Plan"Science and Technology R & D Program,China (2004BA601B01-04-01)
文摘The Bachu-Jiashi earthquake of MS6.8 occurred on February 24,2003,about 20km from the southeast of the 1997~1998 Jiashi seismic region in Xinjiang,and its aftershocks are rich and strong.Did the 1997~1998 Jiashi strong earthquake swarm trigger the Bachu-Jiashi MS6.8 earthquake? The Atushi earthquake of MS6.7 occurred in 1996,and the 1997~1998 Jiashi strong earthquake swarm occurred about 70km from the Atushi earthquake 10 months later.Did the Atushi earthquake of M-S6.7 encourage the 1997~1998 Jiashi strong earthquake swarm? There were 9 earthquakes with M-S6.0 from 1996 to 1997 in the Jiashi seismic region,how did they act on each other? To answer the above questions,the article studies the triggering effect of the activity process of the whole Jiashi earthquake swarm from the 1996 Atushi earthquake of M-S6.7,the 1997~1998 Jiashi strong swarm to the 2003 Bachu-Jiashi earthquake of M-S6.8,and analyzes the seismicity characteristics around the Jiashi region.The results show that the 1996 Atushi earthquake of M-S6.7 encouraged the 1997~1998 Jiashi strong swarm to some extent,the accumulative Coulomb stress change from the previous M-6.0 earthquakes of the Jiashi strong swarm had certain triggering effects on the following M-6.0 events,and the Coulomb stress change converted from the Jiashi strong swarm strongly encouraged the 2003 Bachu-Jiashi earthquake with M-S6.8.