We modeled binary count data with categorical predictors, using logistic regression to develop a statistical method. We found that ANOVA-type analyses often performed unsatisfactorily, even when using different transf...We modeled binary count data with categorical predictors, using logistic regression to develop a statistical method. We found that ANOVA-type analyses often performed unsatisfactorily, even when using different transformations. The logistic transformation of fraction data could be an alternative, but it is not desirable in the statistical sense. We concluded that such methods are not appropriate, especially in cases where the fractions were close to 0 or 1. The major purpose of this paper is to demonstrate that logistic regression with an ANOVA-model like parameterization aids our understanding and provides a somewhat different, but sound, statistical background. We examined a simple real world example to show that we can efficiently test the significance of regression parameters, look for interactions, estimate related confidence intervals, and calculate the difference between the mean values of the referent and experimental subgroups. This paper demonstrates that precise confidence interval estimates can be obtained using the proposed ANOVA-model like approach. The method discussed here can be extended to any type of experimental fraction data analysis, particularly for experimental design.展开更多
Panel count data are frequently encountered when study subjects are under discrete observations.However,limited literature has been found on variable selection for panel count data.In this paper,without considering th...Panel count data are frequently encountered when study subjects are under discrete observations.However,limited literature has been found on variable selection for panel count data.In this paper,without considering the model assumption of observation process,a more general semiparametric transformation model for panel count data with informative observation process is developed.A penalized estimation procedure based on the quantile regression function is proposed for variable selection and parameter estimation simultaneously.The consistency and oracle properties of the estimators are established under some mild conditions.Some simulations and an application are reported to evaluate the proposed approach.展开更多
This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly ...This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly proposed moment conditions include those associated with the equidispersion, the Negbin I-type model and the stationarity. The GMM estimators are constructed incorporating the additional moment conditions. Some Monte Carlo experiments indicate that the GMM estimators incorporating the additional moment conditions perform well, compared to that using only the conventional moment conditions proposed by [2,3].展开更多
This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constru...This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constructs subwindows and deletes expired sub-windows periodically in sliding window, and each sub-window maintains a summary data structure. The first algorithm outputs at most 1/ε + 1 elements for frequency queries over the most recent N elements. The second algorithm adapts multiple levels method to deal with data stream. Once the sketch of the most recent N elements has been constructed, the second algorithm can provides the answers to the frequency queries over the most recent n ( n≤N) elements. The second algorithm outputs at most 1/ε + 2 elements. The analytical and experimental results show that our algorithms are accurate and effective.展开更多
Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to con...Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to convenience, high accuracy, and cost-effectiveness. Manual counting from pre-recorded video footage can be prone to inconsistencies and errors, leading to inaccurate counts. Besides, there are no standard guidelines for collecting video data and conducting manual counts from the recorded videos. This paper aims to comprehensively assess the accuracy of manual counts from pre-recorded videos and introduces guidelines for efficiently collecting video data and conducting manual counts by trained individuals. The accuracy assessment of the manual counts was conducted based on repeated counts, and the guidelines were provided from the experience of conducting a traffic survey on forty strip mall access points in Baton Rouge, Louisiana, USA. The percentage of total error, classification error, and interval error were found to be 1.05 percent, 1.08 percent, and 1.29 percent, respectively. Besides, the percent root mean square errors (RMSE) were found to be 1.13 percent, 1.21 percent, and 1.48 percent, respectively. Guidelines were provided for selecting survey sites, instruments and timeframe, fieldwork, and manual counts for an efficient traffic data collection survey.展开更多
A new three-parameter discrete distribution called the zero-inflated cosine geometric(ZICG)distribution is proposed for the first time herein.It can be used to analyze over-dispersed count data with excess zeros.The b...A new three-parameter discrete distribution called the zero-inflated cosine geometric(ZICG)distribution is proposed for the first time herein.It can be used to analyze over-dispersed count data with excess zeros.The basic statistical properties of the new distribution,such as the moment generating function,mean,and variance are presented.Furthermore,confidence intervals are constructed by using the Wald,Bayesian,and highest posterior density(HPD)methods to estimate the true confidence intervals for the parameters of the ZICG distribution.Their efficacies were investigated by using both simulation and real-world data comprising the number of daily COVID-19 positive cases at the Olympic Games in Tokyo 2020.The results show that the HPD interval performed better than the other methods in terms of coverage probability and average length in most cases studied.展开更多
In this study, we investigate the effects of missing data when estimating HIV/TB co-infection. We revisit the concept of missing data and examine three available approaches for dealing with missingness. The main objec...In this study, we investigate the effects of missing data when estimating HIV/TB co-infection. We revisit the concept of missing data and examine three available approaches for dealing with missingness. The main objective is to identify the best method for correcting missing data in TB/HIV Co-infection setting. We employ both empirical data analysis and extensive simulation study to examine the effects of missing data, the accuracy, sensitivity, specificity and train and test error for different approaches. The novelty of this work hinges on the use of modern statistical learning algorithm when treating missingness. In the empirical analysis, both HIV data and TB-HIV co-infection data imputations were performed, and the missing values were imputed using different approaches. In the simulation study, sets of 0% (Complete case), 10%, 30%, 50% and 80% of the data were drawn randomly and replaced with missing values. Results show complete cases only had a co-infection rate (95% Confidence Interval band) of 29% (25%, 33%), weighted method 27% (23%, 31%), likelihood-based approach 26% (24%, 28%) and multiple imputation approach 21% (20%, 22%). In conclusion, MI remains the best approach for dealing with missing data and failure to apply it, results to overestimation of HIV/TB co-infection rate by 8%.展开更多
The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pr...The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pre-processing: Two different paths can be chosen: Transform RNA- sequencing count data to a continuous variable or continue to work with count data. For each data type, analysis tools have been developed and seem appropriate at first sight, but a deeper analysis of data distribution and structure, are a discussion worth. In this review, open questions regarding RNA-sequencing data nature are discussed and highlighted, indicating important future research topics in statistics that should be addressed for a better analysis of already available and new appearing gene expression data. Moreover, a comparative analysis of RNAseq count and transformed data is presented. This comparison indicates that transforming RNA-seq count data seems appropriate, at least for differential expression detection.展开更多
Often the lifecycle data occur as count of the vital events and are recorded as integers.The purpose of this article is to model the fertility behavior based on religious,educational,economic,and occupational characte...Often the lifecycle data occur as count of the vital events and are recorded as integers.The purpose of this article is to model the fertility behavior based on religious,educational,economic,and occupational characteristics.The responses of classified groups according to these determinants are examined for significant influence on fertility using Poisson regression model(PRM) based on the National Family Health Survey-3 dataset.The observed and predicted probabilities under PRM indicate modal value of two children for the Poisson distribution modeled data.Presence of dominance of two child in the data motivates the authors to adopt multinomial regression model(MRM) in order to link fertility with various socioeconomic indicators responsible for fertility variation.Choice of the explanatory factors is limited to the availability of data.Trends and patterns of preference for birth counts suggest that religion,caste,wealth,female education,and occupation are the dominant factors shaping the observed birth process.Empirical analysis suggests that both the models used in the study perform similarly on the sample data.However,fitting of MRM by taking birth count of two as comparison category shows improved Akaike information criterion and consistent Akaike information criterion values.Current work contributes to the existing literature as it attempts to provide more insight into the determinants of Indian fertility using Poisson and MRM.展开更多
Aim: This study seeks to investigate the factors determining the utilization of antenatal care services, the frequency of that use, and the timing of receiving antenatal care among Egyptian women utilizing a national ...Aim: This study seeks to investigate the factors determining the utilization of antenatal care services, the frequency of that use, and the timing of receiving antenatal care among Egyptian women utilizing a national representative data from Egypt Demographic and Health Surveys (EDHS) in 2000 and 2014. Methods: The paper estimates the logistic regression model, zero-inflated negative binomial model (ZINB), and negative binomial regression model (NB) to identify the most important determinants of antenatal health care utilization. Results: The findings indicate that the period 2000-2014 has experienced a significant increase in the use of antenatal health care services. The use of the public sector antenatal care services relative to that of the private sector has been decreasing over time. Moreover, wealth index, women’s education and quality of health services play significant roles in increasing accessibility of antenatal health care services. On the other hand, women’s empowerment has shown a positive effect in 2000 only. Conclusion: The study highlights the most vulnerable groups that are less likely to have access to antenatal health care services, mainly women who are less educated, poor and living in rural areas especially Upper Egypt. This certainly requires a more targeted health strategy with an equity lens.展开更多
In a typical Kenyan HIV clinical setting, there is a likelihood of registering many zeros during the routine monthly data collection of new HIV infections among HIV exposed infants (HEI). This is attributed to the imp...In a typical Kenyan HIV clinical setting, there is a likelihood of registering many zeros during the routine monthly data collection of new HIV infections among HIV exposed infants (HEI). This is attributed to the implementation of the prevention of mother to child transmission (PMTCT) policies. However, even though the PMTCT policy is implemented uniformly across all public health facilities, implementation naturally differs from every facility due to differential health systems and infrastructure. This leads to structured zero among reported positive HEI (where PMTCT implementation is optimum) and non-structured zero among reported positive HEI (where PMTCT implementation is not optimum). Hence the classical zero-inflated and hurdle models that do not account for the abundance of structured and non-structured zeros in the data can give misleading results. The purpose of this study is to systematically compare performance of the various zero-inflated models with an application to HIV Exposed Infants (HEI) in the context of structured and unstructured zeros. We revisit zero-inflated, hurdle models, Poisson and negative binomial count models and conduct the simulations by varying sample size and levels of abundance zeros. Results from simulation study and real data analysis of exposed infant diagnosis show the negative binomial emerging as the best performing model when fitting data with both structured and non-structured zeros under various settings.展开更多
文摘We modeled binary count data with categorical predictors, using logistic regression to develop a statistical method. We found that ANOVA-type analyses often performed unsatisfactorily, even when using different transformations. The logistic transformation of fraction data could be an alternative, but it is not desirable in the statistical sense. We concluded that such methods are not appropriate, especially in cases where the fractions were close to 0 or 1. The major purpose of this paper is to demonstrate that logistic regression with an ANOVA-model like parameterization aids our understanding and provides a somewhat different, but sound, statistical background. We examined a simple real world example to show that we can efficiently test the significance of regression parameters, look for interactions, estimate related confidence intervals, and calculate the difference between the mean values of the referent and experimental subgroups. This paper demonstrates that precise confidence interval estimates can be obtained using the proposed ANOVA-model like approach. The method discussed here can be extended to any type of experimental fraction data analysis, particularly for experimental design.
基金partially supported by the National Natural Science Foundation of China under Grant No.12001485the National Bureau of Statistics of China under Grant No.2020LY073the First Class Discipline of Zhejiang-A(Zhejiang University of Finance and Economics-Statistics)under Grant No.Z0111119010/024。
文摘Panel count data are frequently encountered when study subjects are under discrete observations.However,limited literature has been found on variable selection for panel count data.In this paper,without considering the model assumption of observation process,a more general semiparametric transformation model for panel count data with informative observation process is developed.A penalized estimation procedure based on the quantile regression function is proposed for variable selection and parameter estimation simultaneously.The consistency and oracle properties of the estimators are established under some mild conditions.Some simulations and an application are reported to evaluate the proposed approach.
文摘This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly proposed moment conditions include those associated with the equidispersion, the Negbin I-type model and the stationarity. The GMM estimators are constructed incorporating the additional moment conditions. Some Monte Carlo experiments indicate that the GMM estimators incorporating the additional moment conditions perform well, compared to that using only the conventional moment conditions proposed by [2,3].
基金Supported by the National Natural Science Foun-dation of China (60403027)
文摘This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constructs subwindows and deletes expired sub-windows periodically in sliding window, and each sub-window maintains a summary data structure. The first algorithm outputs at most 1/ε + 1 elements for frequency queries over the most recent N elements. The second algorithm adapts multiple levels method to deal with data stream. Once the sketch of the most recent N elements has been constructed, the second algorithm can provides the answers to the frequency queries over the most recent n ( n≤N) elements. The second algorithm outputs at most 1/ε + 2 elements. The analytical and experimental results show that our algorithms are accurate and effective.
文摘Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to convenience, high accuracy, and cost-effectiveness. Manual counting from pre-recorded video footage can be prone to inconsistencies and errors, leading to inaccurate counts. Besides, there are no standard guidelines for collecting video data and conducting manual counts from the recorded videos. This paper aims to comprehensively assess the accuracy of manual counts from pre-recorded videos and introduces guidelines for efficiently collecting video data and conducting manual counts by trained individuals. The accuracy assessment of the manual counts was conducted based on repeated counts, and the guidelines were provided from the experience of conducting a traffic survey on forty strip mall access points in Baton Rouge, Louisiana, USA. The percentage of total error, classification error, and interval error were found to be 1.05 percent, 1.08 percent, and 1.29 percent, respectively. Besides, the percent root mean square errors (RMSE) were found to be 1.13 percent, 1.21 percent, and 1.48 percent, respectively. Guidelines were provided for selecting survey sites, instruments and timeframe, fieldwork, and manual counts for an efficient traffic data collection survey.
基金support from the National Science,Research and Innovation Fund (NSRF)King Mongkut’s University of Technology North Bangkok (Grant No.KMUTNB-FF-65-22).
文摘A new three-parameter discrete distribution called the zero-inflated cosine geometric(ZICG)distribution is proposed for the first time herein.It can be used to analyze over-dispersed count data with excess zeros.The basic statistical properties of the new distribution,such as the moment generating function,mean,and variance are presented.Furthermore,confidence intervals are constructed by using the Wald,Bayesian,and highest posterior density(HPD)methods to estimate the true confidence intervals for the parameters of the ZICG distribution.Their efficacies were investigated by using both simulation and real-world data comprising the number of daily COVID-19 positive cases at the Olympic Games in Tokyo 2020.The results show that the HPD interval performed better than the other methods in terms of coverage probability and average length in most cases studied.
文摘In this study, we investigate the effects of missing data when estimating HIV/TB co-infection. We revisit the concept of missing data and examine three available approaches for dealing with missingness. The main objective is to identify the best method for correcting missing data in TB/HIV Co-infection setting. We employ both empirical data analysis and extensive simulation study to examine the effects of missing data, the accuracy, sensitivity, specificity and train and test error for different approaches. The novelty of this work hinges on the use of modern statistical learning algorithm when treating missingness. In the empirical analysis, both HIV data and TB-HIV co-infection data imputations were performed, and the missing values were imputed using different approaches. In the simulation study, sets of 0% (Complete case), 10%, 30%, 50% and 80% of the data were drawn randomly and replaced with missing values. Results show complete cases only had a co-infection rate (95% Confidence Interval band) of 29% (25%, 33%), weighted method 27% (23%, 31%), likelihood-based approach 26% (24%, 28%) and multiple imputation approach 21% (20%, 22%). In conclusion, MI remains the best approach for dealing with missing data and failure to apply it, results to overestimation of HIV/TB co-infection rate by 8%.
文摘The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pre-processing: Two different paths can be chosen: Transform RNA- sequencing count data to a continuous variable or continue to work with count data. For each data type, analysis tools have been developed and seem appropriate at first sight, but a deeper analysis of data distribution and structure, are a discussion worth. In this review, open questions regarding RNA-sequencing data nature are discussed and highlighted, indicating important future research topics in statistics that should be addressed for a better analysis of already available and new appearing gene expression data. Moreover, a comparative analysis of RNAseq count and transformed data is presented. This comparison indicates that transforming RNA-seq count data seems appropriate, at least for differential expression detection.
基金supported by R&D Grant from University of DelhiDU-DST PURSE GrantICMR Grant No.3/1/3/JRF-2010/HRD-122(35831)
文摘Often the lifecycle data occur as count of the vital events and are recorded as integers.The purpose of this article is to model the fertility behavior based on religious,educational,economic,and occupational characteristics.The responses of classified groups according to these determinants are examined for significant influence on fertility using Poisson regression model(PRM) based on the National Family Health Survey-3 dataset.The observed and predicted probabilities under PRM indicate modal value of two children for the Poisson distribution modeled data.Presence of dominance of two child in the data motivates the authors to adopt multinomial regression model(MRM) in order to link fertility with various socioeconomic indicators responsible for fertility variation.Choice of the explanatory factors is limited to the availability of data.Trends and patterns of preference for birth counts suggest that religion,caste,wealth,female education,and occupation are the dominant factors shaping the observed birth process.Empirical analysis suggests that both the models used in the study perform similarly on the sample data.However,fitting of MRM by taking birth count of two as comparison category shows improved Akaike information criterion and consistent Akaike information criterion values.Current work contributes to the existing literature as it attempts to provide more insight into the determinants of Indian fertility using Poisson and MRM.
文摘Aim: This study seeks to investigate the factors determining the utilization of antenatal care services, the frequency of that use, and the timing of receiving antenatal care among Egyptian women utilizing a national representative data from Egypt Demographic and Health Surveys (EDHS) in 2000 and 2014. Methods: The paper estimates the logistic regression model, zero-inflated negative binomial model (ZINB), and negative binomial regression model (NB) to identify the most important determinants of antenatal health care utilization. Results: The findings indicate that the period 2000-2014 has experienced a significant increase in the use of antenatal health care services. The use of the public sector antenatal care services relative to that of the private sector has been decreasing over time. Moreover, wealth index, women’s education and quality of health services play significant roles in increasing accessibility of antenatal health care services. On the other hand, women’s empowerment has shown a positive effect in 2000 only. Conclusion: The study highlights the most vulnerable groups that are less likely to have access to antenatal health care services, mainly women who are less educated, poor and living in rural areas especially Upper Egypt. This certainly requires a more targeted health strategy with an equity lens.
文摘In a typical Kenyan HIV clinical setting, there is a likelihood of registering many zeros during the routine monthly data collection of new HIV infections among HIV exposed infants (HEI). This is attributed to the implementation of the prevention of mother to child transmission (PMTCT) policies. However, even though the PMTCT policy is implemented uniformly across all public health facilities, implementation naturally differs from every facility due to differential health systems and infrastructure. This leads to structured zero among reported positive HEI (where PMTCT implementation is optimum) and non-structured zero among reported positive HEI (where PMTCT implementation is not optimum). Hence the classical zero-inflated and hurdle models that do not account for the abundance of structured and non-structured zeros in the data can give misleading results. The purpose of this study is to systematically compare performance of the various zero-inflated models with an application to HIV Exposed Infants (HEI) in the context of structured and unstructured zeros. We revisit zero-inflated, hurdle models, Poisson and negative binomial count models and conduct the simulations by varying sample size and levels of abundance zeros. Results from simulation study and real data analysis of exposed infant diagnosis show the negative binomial emerging as the best performing model when fitting data with both structured and non-structured zeros under various settings.