The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are dist...The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are distributed on HFRS for particle identification and beam monitoring.The twin TPCs'readout electronics system operates in a trigger-less mode due to its high counting rate,leading to a challenge of handling large amounts of data.To address this problem,we introduced an event-building algorithm.This algorithm employs a hierarchical processing strategy to compress data during transmission and aggregation.In addition,it reconstructs twin TPCs'events online and stores only the reconstructed particle information,which significantly reduces the burden on data transmission and storage resources.Simulation studies demonstrated that the algorithm accurately matches twin TPCs'events and reduces more than 98%of the data volume at a counting rate of 500 kHz/channel.展开更多
This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved ...This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved that these approaches have yielded good results on classifying the sedimentary facies, defining the redox transitional zones and reflecting deep mineralization information. They may probably become new methods on searching for sandstone-type uranium deposits.展开更多
In this work,we achieve high count-rate single-photon output in single-mode(SM)optical fiber.Epitaxial and dilute InAs/GaAs quantum dots(QDs)are embedded in a GaAs/AlGaAs distributed Bragg reflector(DBR)with a micro-p...In this work,we achieve high count-rate single-photon output in single-mode(SM)optical fiber.Epitaxial and dilute InAs/GaAs quantum dots(QDs)are embedded in a GaAs/AlGaAs distributed Bragg reflector(DBR)with a micro-pillar cavity,so as to improve their light emission extraction in the vertical direction,thereby enhancing the optical SM fiber’s collection capabil-ity(numerical aperture:0.13).By tuning the temperature precisely to make the quantum dot exciton emission resonant to the micro-pillar cavity mode(Q~1800),we achieve a fiber-output single-photon count rate as high as 4.73×10^(6) counts per second,with the second-order auto-correlation g2(0)remaining at 0.08.展开更多
The multi-physics instrument(MPI)is the first user cooperative instrument at the China Spallation Neutron Source(CSNS).It was designed to explore the structures of complex materials at multiple scales based on the neu...The multi-physics instrument(MPI)is the first user cooperative instrument at the China Spallation Neutron Source(CSNS).It was designed to explore the structures of complex materials at multiple scales based on the neutron total scattering technique.This imposes the requirements for the detector,including a high detection efficiency to reduce the measurement time and a large solid angle coverage to cover a wide range of momentum transfers.To satisfy these demands,a large-area array of 3He-filled linear position-sensitive detectors(LPSDs)was constructed,each with a diameter of 1 inch and pressure of 20 atm.It uses an orbicular layout of the detector and an eight-pack module design for the arrangement of 3He LPSDs,covering a range of scattering angles from 3°to 170°with a total detector area of approximately 7 m2.The detector works in air,which is separated from the vacuum environment to facilitate installation and maintenance.The characteristics of the MPI detector were investigated through Monte Carlo(MC)simulations using Geant4 and experimental measurements.The results suggest that the detectors are highly efficient in the wavelength range of the MPI,and an efficiency over 25%is achievable for above 0.1 A neutrons.A minimal position resolution of 6.4 mm full width at half maximum(FWHM)along the tube length was achieved at a working voltage of 2200 V,and a deviation below 2 mm between the real and measured positions was attained in the beam experiment.The detector module exhibited good consistency and an excellent counting rate capacity of up to 80 kHz,which satisfied the requirements of experiments with a high event rate.Observations of its operation over the past year have shown that the detector works steadily in sample experiments,which allows the MPI to serve the user program successfully.展开更多
The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that th...The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that the electric field strength and current density in the guard ring are obviously enhanced when GRW is decreased to 1μm.It is experimentally found that,compared with an SPAD with GRW=2μm,the dark count rate(DCR)and afterpulsing probability(AP)of the SPAD with GRW=1μm is significantly increased by 2.7 times and twofold,respectively,meanwhile,its photon detection probability(PDP)is saturated and hard to be promoted at over 2 V excess bias voltage.Although the fill factor(FF)can be enlarged by reducing GRW,the dark noise of devices is negatively affected due to the enhanced trap-assisted tunneling(TAT)effect in the 1μm guard ring region.By comparison,the SPAD with GRW=2μm can achieve a better trade-off between the FF and noise performance.Our study provides a design guideline for guard rings to realize a low-noise SPAD for large-array applications.展开更多
Image quality in positron emission tomography(PET)is affected by random and scattered coincidences and reconstruction protocols.In this study,we investigated the effects of scattered and random coincidences from outsi...Image quality in positron emission tomography(PET)is affected by random and scattered coincidences and reconstruction protocols.In this study,we investigated the effects of scattered and random coincidences from outside the field of view(FOV)on PET image quality for different reconstruction protocols.Imaging was performed on the Discovery 690 PET/CT scanner,using experimental configurations including the NEMA phantom(a body phantom,with six spheres of different sizes)with a signal background ratio of 4:1.The NEMA phantom(phantom I)was scanned separately in a one-bed position.To simulate the effect of random and scatter coincidences from outside the FOV,six cylindrical phantoms with various diameters were added to the NEMA phantom(phantom II).The 18 emission datasets with mean intervals of 15 min were acquired(3 min/scan).The emission data were reconstructed using different techniques.The image quality parameters were evaluated by both phantoms.Variations in the signal-to-noise ratio(SNR)in a 28-mm(10-mm)sphere of phantom II were 37.9%(86.5%)for ordered-subset expectation maximization(OSEM-only),36.8%(81.5%)for point spread function(PSF),32.7%(80.7%)for time of flight(TOF),and 31.5%(77.8%)for OSEM+PSF+TOF,respectively,indicating that OSEM+PSF+TOF reconstruction had the lowest noise levels and lowest coefficient of variation(COV)values.Random and scatter coincidences from outside the FOV induced lower SNR,lower contrast,and higher COV values,indicating image deterioration and significantly impacting smaller sphere sizes.Amongst reconstruction protocols,OSEM+PSF+TOF and OSEM+PSF showed higher contrast values for sphere sizes of 22,28,and 37 mm and higher contrast recovery coefficient values for smaller sphere sizes of 10 and 13 mm.展开更多
目的分析正常成人在不同语速下发音调、响度周期性连续起伏变化/i/音的基频曲线特征,探讨语速及性别对其的影响,为规范最大数数能力(maximum counting ability,MCA)测试和取值提供参考。方法 51例正常成人(男25例,女26例)深吸气后分别...目的分析正常成人在不同语速下发音调、响度周期性连续起伏变化/i/音的基频曲线特征,探讨语速及性别对其的影响,为规范最大数数能力(maximum counting ability,MCA)测试和取值提供参考。方法 51例正常成人(男25例,女26例)深吸气后分别以快、中、慢速持续发音调、响度周期性连续起伏变化/i/音各2次,采用"启音博士言语测量仪"分别测量不同语速下该/i/音的总时长(total time,T)、周期波动(mean time standard deviation,MTSD)、波峰均值(mean wave crest,MWC)、波谷均值(mean wave trough,MWT)、平均基频范围(mean frequency range,MFR)、基频波动(mean frequency range standard deviation,MFRSD),比较语速和性别对各项指标的影响。结果 1随着语速的提高,声样/i/的T(P<0.001)、MFR(P<0.01)和MTSD(P<0.001)显著变小,MWT显著变大(P<0.001),而MWC和MFRSD无明显变化(P>0.05);2声样/i/的T不受性别影响(P>0.05),女性声样的MWT(P<0.001)、MWC(P<0.001)、MFR(P<0.001)、MFRSD(P<0.01)均显著大于男性,而男性声样的MTSD显著大于女性(P<0.01)。结论进行MCA测试和取值时,需考虑语速和性别两个因素的影响。建议应分别测试受试者三种语速状态下的MCA,只有当各语速状态下声样/i/基频曲线图的MWT、MWC、MFR、MFRSD和MTSD值在相应语速、性别所对应的正常范围内时,方能取值或取值有效。展开更多
Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed struct...Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed structures and well-con-trolled operational conditions,the performance of InGaAs/InP SPADs is limited by the inherent characteristics of avalanche pro-cess and the growth quality of InGaAs/InP materials.It is difficult to ensure high detection efficiency while the dark count rate is controlled within a certain range at present.In this paper,we fabricated a device with a thick InGaAs absorption region and an anti-reflection layer.The quantum efficiency of this device reaches 83.2%.We characterized the single-photon performance of the device by a quenching circuit consisting of parallel-balanced InGaAs/InP single photon detectors and single-period sinus-oidal pulse gating.The spike pulse caused by the capacitance effect of the device is eliminated by using the characteristics of parallel balanced common mode signal elimination,and the detection of small avalanche pulse amplitude signal is realized.The maximum detection efficiency is 55.4%with a dark count rate of 43.8 kHz and a noise equivalent power of 6.96×10^(−17 )W/Hz^(1/2) at 247 K.Compared with other reported detectors,this SPAD exhibits higher SPDE and lower noise-equivalent power at a higher cooling temperature.展开更多
High detection efficiency and low intrinsic dark count rate are two advantages of superconducting nanowire single photon detectors(SNSPDs).However,the stray photons penetrated into the fiber would cause the extrinsic ...High detection efficiency and low intrinsic dark count rate are two advantages of superconducting nanowire single photon detectors(SNSPDs).However,the stray photons penetrated into the fiber would cause the extrinsic dark count rate,owing to the free running mode of SNSPDs.In order to improve the performance of SNSPDs in realistic scenarios,stray photons should be investigated and suppression methods should be adopted.In this study,we demonstrate the pulsegated mode,with 500 kHz gating frequency,of a commercial SNSPD system for suppressing the response of stray photons about three orders of magnitude than its free-running counterpart on the extreme test conditions.When we push the gating frequency to 8 MHz,the dark count rate still keeps under 4% of free-running mode.In experiments,the intrinsic dark count rate is also suppressed to 4.56 × 10^(-2) counts per second with system detection efficiency of 76.4372%.Furthermore,the time-correlated single-photon counting analysis also approves the validity of our mode in suppressing the responses of stray photons.展开更多
With the constant increase of accelerator luminosity, the rate requirements of MRPC detectors have become very important, and the aging characteristics of the detector have to be studied meticulously. An online aging ...With the constant increase of accelerator luminosity, the rate requirements of MRPC detectors have become very important, and the aging characteristics of the detector have to be studied meticulously. An online aging test system has been set up in our lab, and in this paper the setupof the system is described and the performance stability of a high-rate MRPC studied over a long running time under a high luminosity environment. The high rate MRPC was irradiated by X-rays for 36 days and the accumulated charge density reached 0.1 C/cm2. No obvious performance degradation was observed for the detector.展开更多
The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribu...The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.展开更多
Background Helium-3-filled linear position-sensitive detectors(LPSDs)have been widely applied to neutron scattering instruments in recent decades owing to the high detection efficiency,the excellent neutron/gamma disc...Background Helium-3-filled linear position-sensitive detectors(LPSDs)have been widely applied to neutron scattering instruments in recent decades owing to the high detection efficiency,the excellent neutron/gamma discrimination,and the ability to construct the detector with large area coverage.More than 65%of neutron instruments at the China Spallation Neutron Source(CSNS)require ^(3)He LPSDs for the building of the detector system.The detector of a neutron scattering instrument is normally an array detector composed of a large number of ^(3)He LPSDs.However,no appropriate substitute detector is available for the ^(3)He LPSD for operation over a short period,and its specifications need to be customized to satisfy the requirements of different instruments.This necessitates the development of ^(3)He LPSDs with different specifications for building and upgrading the detectors of neutron scattering instruments at CSNS.Purpose To meet the general requirements specified by the neutron instruments at CSNS,a ^(3)He LPSD was developed and its performances were investigated by using the neutron beam.Methods The neutron beam experiments for this ^(3)He LPSD,including measurements of counting rate plateau curve,position calibration,and position resolution along the tube path,were carried out at the beamline-20 of CSNS.To evaluate its performance in the instrument operation,a detector module made of this ^(3)He LPSD has been installed in the multi-physics instrument(MPI),and the comparison test with the commercial ^(3)He LPSD has been conducted at neutron scattering experiments.Results and conclusion The experimental measurements for this ^(3)He LPSD based on the neutron beam showed that it satisfies the requirements for use in neutron scattering instruments.It reaches a plateau slope of 2.6%/100 V with a plateau range from 1750 to 1950 V and attained a minimal position resolution of 5.3 mm(FWHM),superior to the one achieved by the commercial ^(3)He LPSD.In addition,this ^(3)He LPSD detector module applied to the MPI has been working steadily for half of year and is available for use in experiments.These results provide a sound basis for the subsequent construction and upgradation of the detector of neutron scattering instruments at CSNS.展开更多
In this paper, the performance of a type of domestic THGEM (THick Gaseous Electron Multiplier) working in Ar/CO2 mixtures is reported in detail. This kind of single THGEM can provide a gain range from 100 to 1000, w...In this paper, the performance of a type of domestic THGEM (THick Gaseous Electron Multiplier) working in Ar/CO2 mixtures is reported in detail. This kind of single THGEM can provide a gain range from 100 to 1000, which is very suitable for application in neutron detection. In order to study its basic characteristics as a reference for the development of a THGEM based neutron detector, the counting rate plateau, the energy resolution and the gain of the THGEM have been measured in different Ar/CO2 mixtures with a variety of electrical fields. For the Ar/CO2(90%/10%) gas mixture, a wide counting rate plateau is achieved from 720 V to 770 V, with a plateau slope of 2.4%/100 V, and an excellent energy resolution of about 22% is obtained at the 5.9 keV full energy peak of the 55Fe X-ray source.展开更多
The neutrino detector of the Jiangmen Underground Neutrino Observatory(JUNO) is designed to use20 kilotons of liquid scintillator and approximately 16000 20 inch photomultipliers(PMTs).One of the options is to use...The neutrino detector of the Jiangmen Underground Neutrino Observatory(JUNO) is designed to use20 kilotons of liquid scintillator and approximately 16000 20 inch photomultipliers(PMTs).One of the options is to use the 20 inch R12860 PMT with high quantum efficiency which has recently been developed by Hamamatsu Photonics.The performance of the newly developed PMT preproduction samples is evaluated.The results show that its quantum efficiency is 30%at 400 nm.Its Peak/Valley(P/V) ratio for the single photoelectron is 4.75 and the dark count rate is 27 kHz at the threshold of 3 mV while the gain is at 1 × 10^7.The transit time spread of a single photoelectron is 2.86 ns.Generally the performances of this new 20 inch PMT are improved over the old one of R3600.展开更多
The silicon pixel sensor(SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection(SRD). In this paper, the design, fabrication, and characterizat...The silicon pixel sensor(SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection(SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process,excellent SPS characteristics with dark current of 2 n A/cm^2, full depletion voltage 〈 50 V and breakdown voltage〉 150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2 B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high(〈 20% for X-ray photon energy 〉 10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source.展开更多
Positronium time of flight spectroscopy(Ps-TOF)is an effective technique for porous material research.It has advantages over other techniques for analyzing the porosity and pore tortuosity of materials.This paper de...Positronium time of flight spectroscopy(Ps-TOF)is an effective technique for porous material research.It has advantages over other techniques for analyzing the porosity and pore tortuosity of materials.This paper describes a design for Ps-TOF apparatus based on the Beijing intense slow positron beam,supplying a new material characterization technique.In order to improve the time resolution and increase the count rate of the apparatus,the detector system is optimized.For 3 eV o-Ps,the time broadening is 7.66 ns and the count rate is 3 cps after correction.展开更多
A boron-lined proportional counter (BLPC) with a count rate limit close to the multi-wire proportional counter was manufactured to measure the mixed field around reactors. After measurement with a standard Am-Be neu...A boron-lined proportional counter (BLPC) with a count rate limit close to the multi-wire proportional counter was manufactured to measure the mixed field around reactors. After measurement with a standard Am-Be neutron source (activity: 100 mCi), the results show that the operating voltage of the BLPC is 800 V, the plateau length is 100 V and the slope is 13.2%/100 V. The width and rise time of the output pulse of the BLPC are 1.26 μs and 370 ns, respectively. When the BLPC works at a count rate of 1.0 × 10 5 count/s, the pulse pile-up probability of the BLPC is 3.6%. A clear peak can be seen in the pulse height spectrum of the BLPC. and the performances illustrate that a BLPC working in pulse mode can serve as a source range detector of reactors.展开更多
基金partially supported by the Strategic Priority Research Program of Chinese Academy of Science(No.XDB 34030000)the National Natural Science Foundation of China(Nos.11975293 and 12205348)。
文摘The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are distributed on HFRS for particle identification and beam monitoring.The twin TPCs'readout electronics system operates in a trigger-less mode due to its high counting rate,leading to a challenge of handling large amounts of data.To address this problem,we introduced an event-building algorithm.This algorithm employs a hierarchical processing strategy to compress data during transmission and aggregation.In addition,it reconstructs twin TPCs'events online and stores only the reconstructed particle information,which significantly reduces the burden on data transmission and storage resources.Simulation studies demonstrated that the algorithm accurately matches twin TPCs'events and reduces more than 98%of the data volume at a counting rate of 500 kHz/channel.
文摘This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved that these approaches have yielded good results on classifying the sedimentary facies, defining the redox transitional zones and reflecting deep mineralization information. They may probably become new methods on searching for sandstone-type uranium deposits.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2018B030329001)the National Key Technologies R&D Program of China(2018YFA0306101)+2 种基金The Scientific Instrument Developing Project of the Chinese Academy of Science(YJKYYQ20170032)the National Natural Science Foundation of China(61505196)the Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G01).
文摘In this work,we achieve high count-rate single-photon output in single-mode(SM)optical fiber.Epitaxial and dilute InAs/GaAs quantum dots(QDs)are embedded in a GaAs/AlGaAs distributed Bragg reflector(DBR)with a micro-pillar cavity,so as to improve their light emission extraction in the vertical direction,thereby enhancing the optical SM fiber’s collection capabil-ity(numerical aperture:0.13).By tuning the temperature precisely to make the quantum dot exciton emission resonant to the micro-pillar cavity mode(Q~1800),we achieve a fiber-output single-photon count rate as high as 4.73×10^(6) counts per second,with the second-order auto-correlation g2(0)remaining at 0.08.
基金supported by the National Key R&D Program of China (No. 2021YFA1600703)National Natural Science Foundation of China (No. 12175254)Youth Innovation Promotion Association CAS
文摘The multi-physics instrument(MPI)is the first user cooperative instrument at the China Spallation Neutron Source(CSNS).It was designed to explore the structures of complex materials at multiple scales based on the neutron total scattering technique.This imposes the requirements for the detector,including a high detection efficiency to reduce the measurement time and a large solid angle coverage to cover a wide range of momentum transfers.To satisfy these demands,a large-area array of 3He-filled linear position-sensitive detectors(LPSDs)was constructed,each with a diameter of 1 inch and pressure of 20 atm.It uses an orbicular layout of the detector and an eight-pack module design for the arrangement of 3He LPSDs,covering a range of scattering angles from 3°to 170°with a total detector area of approximately 7 m2.The detector works in air,which is separated from the vacuum environment to facilitate installation and maintenance.The characteristics of the MPI detector were investigated through Monte Carlo(MC)simulations using Geant4 and experimental measurements.The results suggest that the detectors are highly efficient in the wavelength range of the MPI,and an efficiency over 25%is achievable for above 0.1 A neutrons.A minimal position resolution of 6.4 mm full width at half maximum(FWHM)along the tube length was achieved at a working voltage of 2200 V,and a deviation below 2 mm between the real and measured positions was attained in the beam experiment.The detector module exhibited good consistency and an excellent counting rate capacity of up to 80 kHz,which satisfied the requirements of experiments with a high event rate.Observations of its operation over the past year have shown that the detector works steadily in sample experiments,which allows the MPI to serve the user program successfully.
基金supported by the Jiangsu Agricultural Science and Technology Innovation Fund of China(No.CX(21)3062)the National Natural Science Foundation of China(No.62171233).
文摘The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that the electric field strength and current density in the guard ring are obviously enhanced when GRW is decreased to 1μm.It is experimentally found that,compared with an SPAD with GRW=2μm,the dark count rate(DCR)and afterpulsing probability(AP)of the SPAD with GRW=1μm is significantly increased by 2.7 times and twofold,respectively,meanwhile,its photon detection probability(PDP)is saturated and hard to be promoted at over 2 V excess bias voltage.Although the fill factor(FF)can be enlarged by reducing GRW,the dark noise of devices is negatively affected due to the enhanced trap-assisted tunneling(TAT)effect in the 1μm guard ring region.By comparison,the SPAD with GRW=2μm can achieve a better trade-off between the FF and noise performance.Our study provides a design guideline for guard rings to realize a low-noise SPAD for large-array applications.
基金supported by the Tehran University of Medical Sciences under Grant No.36291PET/CT and Cyclotron Center of Masih Daneshvari Hospital at Shahid Beheshti University of Medical Sciences。
文摘Image quality in positron emission tomography(PET)is affected by random and scattered coincidences and reconstruction protocols.In this study,we investigated the effects of scattered and random coincidences from outside the field of view(FOV)on PET image quality for different reconstruction protocols.Imaging was performed on the Discovery 690 PET/CT scanner,using experimental configurations including the NEMA phantom(a body phantom,with six spheres of different sizes)with a signal background ratio of 4:1.The NEMA phantom(phantom I)was scanned separately in a one-bed position.To simulate the effect of random and scatter coincidences from outside the FOV,six cylindrical phantoms with various diameters were added to the NEMA phantom(phantom II).The 18 emission datasets with mean intervals of 15 min were acquired(3 min/scan).The emission data were reconstructed using different techniques.The image quality parameters were evaluated by both phantoms.Variations in the signal-to-noise ratio(SNR)in a 28-mm(10-mm)sphere of phantom II were 37.9%(86.5%)for ordered-subset expectation maximization(OSEM-only),36.8%(81.5%)for point spread function(PSF),32.7%(80.7%)for time of flight(TOF),and 31.5%(77.8%)for OSEM+PSF+TOF,respectively,indicating that OSEM+PSF+TOF reconstruction had the lowest noise levels and lowest coefficient of variation(COV)values.Random and scatter coincidences from outside the FOV induced lower SNR,lower contrast,and higher COV values,indicating image deterioration and significantly impacting smaller sphere sizes.Amongst reconstruction protocols,OSEM+PSF+TOF and OSEM+PSF showed higher contrast values for sphere sizes of 22,28,and 37 mm and higher contrast recovery coefficient values for smaller sphere sizes of 10 and 13 mm.
文摘目的分析正常成人在不同语速下发音调、响度周期性连续起伏变化/i/音的基频曲线特征,探讨语速及性别对其的影响,为规范最大数数能力(maximum counting ability,MCA)测试和取值提供参考。方法 51例正常成人(男25例,女26例)深吸气后分别以快、中、慢速持续发音调、响度周期性连续起伏变化/i/音各2次,采用"启音博士言语测量仪"分别测量不同语速下该/i/音的总时长(total time,T)、周期波动(mean time standard deviation,MTSD)、波峰均值(mean wave crest,MWC)、波谷均值(mean wave trough,MWT)、平均基频范围(mean frequency range,MFR)、基频波动(mean frequency range standard deviation,MFRSD),比较语速和性别对各项指标的影响。结果 1随着语速的提高,声样/i/的T(P<0.001)、MFR(P<0.01)和MTSD(P<0.001)显著变小,MWT显著变大(P<0.001),而MWC和MFRSD无明显变化(P>0.05);2声样/i/的T不受性别影响(P>0.05),女性声样的MWT(P<0.001)、MWC(P<0.001)、MFR(P<0.001)、MFRSD(P<0.01)均显著大于男性,而男性声样的MTSD显著大于女性(P<0.01)。结论进行MCA测试和取值时,需考虑语速和性别两个因素的影响。建议应分别测试受试者三种语速状态下的MCA,只有当各语速状态下声样/i/基频曲线图的MWT、MWC、MFR、MFRSD和MTSD值在相应语速、性别所对应的正常范围内时,方能取值或取值有效。
基金jointly supported by the National Key Research and Development Program of China (2019YFB22-05202)National Natural Science Foundation of China(61774152)
文摘Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed structures and well-con-trolled operational conditions,the performance of InGaAs/InP SPADs is limited by the inherent characteristics of avalanche pro-cess and the growth quality of InGaAs/InP materials.It is difficult to ensure high detection efficiency while the dark count rate is controlled within a certain range at present.In this paper,we fabricated a device with a thick InGaAs absorption region and an anti-reflection layer.The quantum efficiency of this device reaches 83.2%.We characterized the single-photon performance of the device by a quenching circuit consisting of parallel-balanced InGaAs/InP single photon detectors and single-period sinus-oidal pulse gating.The spike pulse caused by the capacitance effect of the device is eliminated by using the characteristics of parallel balanced common mode signal elimination,and the detection of small avalanche pulse amplitude signal is realized.The maximum detection efficiency is 55.4%with a dark count rate of 43.8 kHz and a noise equivalent power of 6.96×10^(−17 )W/Hz^(1/2) at 247 K.Compared with other reported detectors,this SPAD exhibits higher SPDE and lower noise-equivalent power at a higher cooling temperature.
基金Project supported by the National Natural Science Foundation of China(Grant No.61605248)the National Basic Research Program of China(Grant No.2013CB338002)。
文摘High detection efficiency and low intrinsic dark count rate are two advantages of superconducting nanowire single photon detectors(SNSPDs).However,the stray photons penetrated into the fiber would cause the extrinsic dark count rate,owing to the free running mode of SNSPDs.In order to improve the performance of SNSPDs in realistic scenarios,stray photons should be investigated and suppression methods should be adopted.In this study,we demonstrate the pulsegated mode,with 500 kHz gating frequency,of a commercial SNSPD system for suppressing the response of stray photons about three orders of magnitude than its free-running counterpart on the extreme test conditions.When we push the gating frequency to 8 MHz,the dark count rate still keeps under 4% of free-running mode.In experiments,the intrinsic dark count rate is also suppressed to 4.56 × 10^(-2) counts per second with system detection efficiency of 76.4372%.Furthermore,the time-correlated single-photon counting analysis also approves the validity of our mode in suppressing the responses of stray photons.
基金Supported by National Natural Science Foundation of China(11420101004,11461141011,11275108)Ministry of Science and Technology(2015CB856905)
文摘With the constant increase of accelerator luminosity, the rate requirements of MRPC detectors have become very important, and the aging characteristics of the detector have to be studied meticulously. An online aging test system has been set up in our lab, and in this paper the setupof the system is described and the performance stability of a high-rate MRPC studied over a long running time under a high luminosity environment. The high rate MRPC was irradiated by X-rays for 36 days and the accumulated charge density reached 0.1 C/cm2. No obvious performance degradation was observed for the detector.
基金Supported by Shanghai Natural Science Foundation(22ZR1472600).
文摘The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.
基金supported by the National Key R&D Program of China[Grant No.2021YFA1600703]the Strategic Priority Research Program of the Chinese Academy of Sciences[Grant No.XPB23]the National Natural Science Foundation of China[Grant No.12175254].
文摘Background Helium-3-filled linear position-sensitive detectors(LPSDs)have been widely applied to neutron scattering instruments in recent decades owing to the high detection efficiency,the excellent neutron/gamma discrimination,and the ability to construct the detector with large area coverage.More than 65%of neutron instruments at the China Spallation Neutron Source(CSNS)require ^(3)He LPSDs for the building of the detector system.The detector of a neutron scattering instrument is normally an array detector composed of a large number of ^(3)He LPSDs.However,no appropriate substitute detector is available for the ^(3)He LPSD for operation over a short period,and its specifications need to be customized to satisfy the requirements of different instruments.This necessitates the development of ^(3)He LPSDs with different specifications for building and upgrading the detectors of neutron scattering instruments at CSNS.Purpose To meet the general requirements specified by the neutron instruments at CSNS,a ^(3)He LPSD was developed and its performances were investigated by using the neutron beam.Methods The neutron beam experiments for this ^(3)He LPSD,including measurements of counting rate plateau curve,position calibration,and position resolution along the tube path,were carried out at the beamline-20 of CSNS.To evaluate its performance in the instrument operation,a detector module made of this ^(3)He LPSD has been installed in the multi-physics instrument(MPI),and the comparison test with the commercial ^(3)He LPSD has been conducted at neutron scattering experiments.Results and conclusion The experimental measurements for this ^(3)He LPSD based on the neutron beam showed that it satisfies the requirements for use in neutron scattering instruments.It reaches a plateau slope of 2.6%/100 V with a plateau range from 1750 to 1950 V and attained a minimal position resolution of 5.3 mm(FWHM),superior to the one achieved by the commercial ^(3)He LPSD.In addition,this ^(3)He LPSD detector module applied to the MPI has been working steadily for half of year and is available for use in experiments.These results provide a sound basis for the subsequent construction and upgradation of the detector of neutron scattering instruments at CSNS.
基金Supported by National Natural Science Foundation of China(11127508,11175199)NPL,CAEP(Project 2013DB06)
文摘In this paper, the performance of a type of domestic THGEM (THick Gaseous Electron Multiplier) working in Ar/CO2 mixtures is reported in detail. This kind of single THGEM can provide a gain range from 100 to 1000, which is very suitable for application in neutron detection. In order to study its basic characteristics as a reference for the development of a THGEM based neutron detector, the counting rate plateau, the energy resolution and the gain of the THGEM have been measured in different Ar/CO2 mixtures with a variety of electrical fields. For the Ar/CO2(90%/10%) gas mixture, a wide counting rate plateau is achieved from 720 V to 770 V, with a plateau slope of 2.4%/100 V, and an excellent energy resolution of about 22% is obtained at the 5.9 keV full energy peak of the 55Fe X-ray source.
基金Supported by Strategic Priority Research Program of Chinese Academy of Sciences(X-DA10010200)Key Deployment Project of Chinese Academy of Sciences and CAS Center for Excellence in Particle Physics(CCEPP)
文摘The neutrino detector of the Jiangmen Underground Neutrino Observatory(JUNO) is designed to use20 kilotons of liquid scintillator and approximately 16000 20 inch photomultipliers(PMTs).One of the options is to use the 20 inch R12860 PMT with high quantum efficiency which has recently been developed by Hamamatsu Photonics.The performance of the newly developed PMT preproduction samples is evaluated.The results show that its quantum efficiency is 30%at 400 nm.Its Peak/Valley(P/V) ratio for the single photoelectron is 4.75 and the dark count rate is 27 kHz at the threshold of 3 mV while the gain is at 1 × 10^7.The transit time spread of a single photoelectron is 2.86 ns.Generally the performances of this new 20 inch PMT are improved over the old one of R3600.
基金Supported by Prefabrication Research of Beijing Advanced Photon Source(R&D for BAPS)National Natural Science Foundation of China(11335010)
文摘The silicon pixel sensor(SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection(SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process,excellent SPS characteristics with dark current of 2 n A/cm^2, full depletion voltage 〈 50 V and breakdown voltage〉 150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2 B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high(〈 20% for X-ray photon energy 〉 10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source.
基金Supported by NSFC (10835006, 60606011, 10705031)
文摘Positronium time of flight spectroscopy(Ps-TOF)is an effective technique for porous material research.It has advantages over other techniques for analyzing the porosity and pore tortuosity of materials.This paper describes a design for Ps-TOF apparatus based on the Beijing intense slow positron beam,supplying a new material characterization technique.In order to improve the time resolution and increase the count rate of the apparatus,the detector system is optimized.For 3 eV o-Ps,the time broadening is 7.66 ns and the count rate is 3 cps after correction.
文摘A boron-lined proportional counter (BLPC) with a count rate limit close to the multi-wire proportional counter was manufactured to measure the mixed field around reactors. After measurement with a standard Am-Be neutron source (activity: 100 mCi), the results show that the operating voltage of the BLPC is 800 V, the plateau length is 100 V and the slope is 13.2%/100 V. The width and rise time of the output pulse of the BLPC are 1.26 μs and 370 ns, respectively. When the BLPC works at a count rate of 1.0 × 10 5 count/s, the pulse pile-up probability of the BLPC is 3.6%. A clear peak can be seen in the pulse height spectrum of the BLPC. and the performances illustrate that a BLPC working in pulse mode can serve as a source range detector of reactors.