The coupling efficiency of the beam combination and the fiber-coupled module is limited due to the large vertical divergent angle of conventional semiconductor laser diodes. We present a high coupling efficiency modul...The coupling efficiency of the beam combination and the fiber-coupled module is limited due to the large vertical divergent angle of conventional semiconductor laser diodes. We present a high coupling efficiency module using photonic-band-crystal (PBC) laser diodes with narrow vertical divergent angles. Three PBC single-emitter laser diodes are combined into a fiber with core diameter of 105μm and numerical aperture of 0.22. A high coupling efficiency of 94.4% is achieved and the brightness is calculated to be 1.T MW/(cm2.sr) with the injection current of 8A.展开更多
With the aim of achieving high coupling power of RWG SLDs into SMFs,the structure dependences of the output power and the near field pattern are investigated. The thicknesses of the layers between the active region an...With the aim of achieving high coupling power of RWG SLDs into SMFs,the structure dependences of the output power and the near field pattern are investigated. The thicknesses of the layers between the active region and the ridge waveguide are optimized by taking into account the injected carrier distribution and local material gain in the SLD cross section.展开更多
A high efficiency and broad bandwidth grating coupler between a silicon-on-insulator (SOI) nanophotonic waveguide and fibre is designed and fabricated. Coupling efficiencies of 46% and 25% at a wavelength of 1.55um ...A high efficiency and broad bandwidth grating coupler between a silicon-on-insulator (SOI) nanophotonic waveguide and fibre is designed and fabricated. Coupling efficiencies of 46% and 25% at a wavelength of 1.55um are achieved by simulation and experiment, respectively. An optical 3 dB bandwidth of 45 mn from 1530 nm to 1575 nm is also obtained in experin, ent. Numerical calculation shows that a tolerance to fabrication error of 10 nm in etch depth is achievable. The measurement results indicate that the alignment error of 112 um results in less than 1 dB additional coupling loss.展开更多
The coupled resonator-induced transparency (CRIT) phenomenon, which is analogous to electromagnetically induced transparency in atomic systems, can occur in an original integrated optical resonator system due to the...The coupled resonator-induced transparency (CRIT) phenomenon, which is analogous to electromagnetically induced transparency in atomic systems, can occur in an original integrated optical resonator system due to the coherent interference of the coupled optical resonators. The system was composed of three ring resonators on silicon, each with the same cavity size, and the optical coupling to the input and output ports was achieved using grating with a power coupling efficiency of 36%. A CRIT resonance whose spectrum shows a narrow transparency peak with a low group velocity was demonstrated. The quality factor of the ring resonator can attain a value up to 6x 104, and the harmonic wavelength can be controlled by adjusting the temperature. The through and drop transmission spectra of the resonator are reconciled well with each other and also consistent well with the theoretical analysis.展开更多
We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forwa...We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forward scattering dominates. At the same time, this model provides an efficiency gain of an order of magnitude or more over two-way coupled-mode models. This model can be applied to three-dimensional range-dependent problems with a slowly varying bathymetry or internal waves. A numerical example of the latter is demonstrated in this work. Comparisons of both accuracy and efficiency between the present model and a benchmark model are also provided.展开更多
Theoretical analyses have been performed to describe the coupling losses for a plane mirror in rectangular waveguide resonator for an arbitrary waveguide mode as a function of the Fresnel number for several values of ...Theoretical analyses have been performed to describe the coupling losses for a plane mirror in rectangular waveguide resonator for an arbitrary waveguide mode as a function of the Fresnel number for several values of the aspect ratio by using Fresnel approximation.展开更多
We have carried out the hohlraum experiments about radiation temperature scaling on the Shenguang-Ⅱ (SG- Ⅱ) laser facility with eight laser beams of 0.35#m, pulse duration of about 1.0ns and total energy of 2000J....We have carried out the hohlraum experiments about radiation temperature scaling on the Shenguang-Ⅱ (SG- Ⅱ) laser facility with eight laser beams of 0.35#m, pulse duration of about 1.0ns and total energy of 2000J. The reradiated x-ray flux through the laser entrance hole was measured using a soft x-ray spectrometer. The measured peak radiation temperature was 170eV for the standard hohlraum and 150 eV for the 1.5-scaled one. We have derived the radiation temperature scaling law, in which the laser hohlraum coupling efficiency is included. With an appropriate coupling efficiency, the coincidences between experimental and scaling hohlraum radiation temperatures are rather good.展开更多
In this paper,we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study.From our theoretical study,the octahedral spherical hohlraums with 6 Laser Entrance Holes(LEHs)of octa...In this paper,we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study.From our theoretical study,the octahedral spherical hohlraums with 6 Laser Entrance Holes(LEHs)of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7.In addition,the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology.We studied the laser arrangement and constraints of the octahedral spherical hohlraums,and gave a design on the laser arrangement for ignition octahedral hohlraums.As a result,the injection angle of laser beams of 50°-60°was proposed as the optimum candidate range for the octahedral spherical hohlraums.We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields,in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport.We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums,the rugby hohlraums and the cylindrical hohlraums,and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive.Up till to now,we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG)laser facilities,including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums,spherical hohlraum energetics on the SGIII prototype laser facility,and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.展开更多
Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optica...Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.展开更多
The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode f...The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode field distribution pattern is obtained through the different kinds of driving sources. It is found that the optical field mode is determined by waveguide structure and optical wavelength other than the driving source.According to the mode field distribution, the optimum coupling efficiency can be predicted. Compared with another numerical methods,the CPU-time and memory elements of computer used by FDTD are much less.展开更多
Continuous-wave cavity ring-down spectroscopy(CW-CRDS)is an important technical means to monitor greenhouse gases in atmospheric environment.In this paper,a CW-CRDS system is built to meet the needs of atmospheric met...Continuous-wave cavity ring-down spectroscopy(CW-CRDS)is an important technical means to monitor greenhouse gases in atmospheric environment.In this paper,a CW-CRDS system is built to meet the needs of atmospheric methane monitoring.The problem of mode matching is explained from the perspective of transverse mode and longitudinal mode,and the influence of laser injection efficiency on measurement precision is further analyzed.The results of cavity ring-down time measurement show that the measurement precision is higher when the laser is coupled with the fundamental mode.In the experiment,DFB laser is used to calibrate the system with standard methane concentration,and the measurement residual is less than±4×10^(-4)μs^(-1).The methane concentration in the air is monitored in real time for two days.The results show the consistency of the concentration changes over the two days,which further demonstrates the reliability of the system for the measurement of trace methane.By analyzing the influence of mode matching,it not only assists the adjustment of the optical path,but also further improves the sensitivity of the system measurement.展开更多
After reviewing three different definitions of mode field diameter of single-mode fibers, coupled efficiency calculation methods associated with lateral offset, longitude separation and wavelength, the effects produce...After reviewing three different definitions of mode field diameter of single-mode fibers, coupled efficiency calculation methods associated with lateral offset, longitude separation and wavelength, the effects produced by them, and the influences of splicing defects were discussed in detail. The regularities of the effects were studied according to the first order derivation of couple efficiency formula, and a simplified formula for couple efficiency calculation was presented under the circumstance of slight misalignment, with respect to wavelength, 2, and in a good agreement with the theoretical model. The simplified formula provides a new but simple approach to evaluate wavelength dependent couple efficiency of single-mode fibers. Theoretical analyses and numerical calculations show that, when those defects exist, the wavelength produces additional effects on the couple loss that growth of wavelength causes an increase on the couple efficiency for the lateral offset or longitude separation whereas lessens the couple efficiency due to angular misalignment or mode fields mismatching, and that the wavelength degrades the couple efficiency distinctly when λ≥2.5 μm whereas it distorts the couple slightly in range of λ≤2λ≤2 μm.展开更多
Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performa...Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performance of the filter is investigated using finite-difference time-domain (FDTD) method, and the results show that within a very short coupling distance of about 3λ, where ), is the wavelength of signal in vacuum, the incident signals with different frequencies are separated into different channels with a contrast ratio of 20 dB. The advantages of this kind of filter are small size and easily tunable operation frequencies.展开更多
Polypropylene microporous membranes were treated with plasma in a mixture of N2 and H2 (1:2 in volume). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT1R), X-ray photoelectron spectroscopy...Polypropylene microporous membranes were treated with plasma in a mixture of N2 and H2 (1:2 in volume). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT1R), X-ray photoelectron spectroscopy (XPS) and ultra-violet (UV) spectra demonstrated the success of grafting amino groups. The density of the polar amino groups on the membrane surface is about 0.59 μmol/cm2. The as-treated membranes were successively applied to the in situ synthesis of oligonucleotides and an average coupling yield was more than 98%. The surface feature of the treated membrane is suggested to be responsible for its advantage over a glass slide.展开更多
A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating groo...A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency.Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer.展开更多
A novel substrate for in situ synthesis of oligonucleotide was prepared by hydrolyzing microporous polyamide-6 membranes in a 0.01mol/L NaOH/(H2O-CH3OH) mixture medium. The formation of amines (NH2) on the surface was...A novel substrate for in situ synthesis of oligonucleotide was prepared by hydrolyzing microporous polyamide-6 membranes in a 0.01mol/L NaOH/(H2O-CH3OH) mixture medium. The formation of amines (NH2) on the surface was proved by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The treated membrane was applied for in situ synthesis of oligonucleotide and a single step coupling efficiency determined by ultraviolet (UV) spectra was above 98 %.展开更多
Wavelength demultiplexing waveguide couplers have important applications in integrated nanophotonic devices. Two of the most important indicators of the quality of a wavelength demultiplexing coupler are coupling effi...Wavelength demultiplexing waveguide couplers have important applications in integrated nanophotonic devices. Two of the most important indicators of the quality of a wavelength demultiplexing coupler are coupling efficiency and splitting ratio. In this study, we utilize two asymmetric high-index dielectric nanoantennas directly positioned on top of a silicon-on insulator waveguide to realize a compact wavelength demultiplexing coupler in a communication band, which is based on the interference of the waveguide modes coupled by the two nanoantennas. We add a Au substrate for further increasing the coupling efficiency. This has constructive and destructive influences on the antenna's in-coupling efficiency owing to the Fabry-Perot(FP) resonance in the SiO2 layer. Therefore, we can realize a wavelength demultiplexing coupler with compact size and high coupling efficiency. This coupler has widespread applications in the areas of wavelength filters,on-chip signal processing, and integrated nanophotonic circuits.展开更多
According to the principle of choosing the light source in the fiber optic sensing measurement,semiconductor laser is used as the light source of fiber optic sensor and single-mode fiber is used as the tail fiber of l...According to the principle of choosing the light source in the fiber optic sensing measurement,semiconductor laser is used as the light source of fiber optic sensor and single-mode fiber is used as the tail fiber of light source. Based on optical design software Zemax’s pure non-sequential components,a coupling system of semiconductor laser and single-mode fiber is designed. By analyzing the beam characteristics of the semiconductor laser and the coupled mode theory of semiconductor laser and single-mode fiber,the combined lens consists of a ball lens and a collimating lens for the purpose of improving the coupling efficiency and adjusting tolerance. The simulation results show that the coupling efficiency can reach about 78% by using one million ray traces on non-sequential components,while the experimental test result is 69.11%,accordingly,the reasons for the difference between the experiment and the simulation results are analyzed.展开更多
Urea plays a vital role in the sustainable development of mankind as it is one of the most important nitrogen fertilizers.Conventional synthesis of urea is accompanied by a high level of energy consumption while elect...Urea plays a vital role in the sustainable development of mankind as it is one of the most important nitrogen fertilizers.Conventional synthesis of urea is accompanied by a high level of energy consumption while electrocatalytic methods suffer from low yields and poor selectivity.Our work achieves efficient synthesis of urea by designing the graphene-In_(2)O_(3)electrocatalysts for the co-activated reduction of nitrate and carbon dioxide,where the formation rate of urea,Faraday efficiency(FE)and carbon selectivity at-0.35 V vs.RHE can reach 357.47μg mg^(-1)h^(-1),10.46%and~100%,respectively.Herein,the key intermediates in the C–N coupling reaction are demonstrated to be*NH_(2)and*CO_(2),which is of novelty compared to previous reports.This work may provide inspiration for subsequent studies on the reaction mechanism of the electrochemical synthesis of urea,as well as theoretical guidance for the sustainable synthesis of some other important chemical substances.展开更多
In order to simulate and analyze hot strip crown and flatness accurately and efficiently, the 3-D (three-di- mensional) coupled model involved in RPFEM (rigid-plastic finite element method) is improved based on th...In order to simulate and analyze hot strip crown and flatness accurately and efficiently, the 3-D (three-di- mensional) coupled model involved in RPFEM (rigid-plastic finite element method) is improved based on the analyti- cal model of forecasting rolling force distribution. In the analytical model, variational method is employed to solve the lateral flow of metal and influential function method is employed to calculate roll deflection, the lateral distribution of rolling force can be obtained rapidly by iterative strategy. Then the 3-D coupled model uses the result as initial distri- bution of rolling force to calculate roll deflection and makes the initial on-load roll gap profile close to the final value, so as to reduce iterations and increase efficiency. Compared with previous algorithms, the improved model can reduce the iterations by about 50% and shorten the computing time by about 60% on the basis of the calculation accuracy.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61535013,61321063 and 61404133the National Key Research and Development Program of China under Grant Nos 2016YFB0402203,2016YFB0401804 and2016YFA0301102the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2014096
文摘The coupling efficiency of the beam combination and the fiber-coupled module is limited due to the large vertical divergent angle of conventional semiconductor laser diodes. We present a high coupling efficiency module using photonic-band-crystal (PBC) laser diodes with narrow vertical divergent angles. Three PBC single-emitter laser diodes are combined into a fiber with core diameter of 105μm and numerical aperture of 0.22. A high coupling efficiency of 94.4% is achieved and the brightness is calculated to be 1.T MW/(cm2.sr) with the injection current of 8A.
文摘With the aim of achieving high coupling power of RWG SLDs into SMFs,the structure dependences of the output power and the near field pattern are investigated. The thicknesses of the layers between the active region and the ridge waveguide are optimized by taking into account the injected carrier distribution and local material gain in the SLD cross section.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60537010 and 60877036)the National Basic Research Program of China (Grant No. 2006CB302803)the Knowledge Innovation Program of Institute of Semiconductors, Chinese Academy of Sciences (ISCAS) (Grant No. ISCAS2008T10)
文摘A high efficiency and broad bandwidth grating coupler between a silicon-on-insulator (SOI) nanophotonic waveguide and fibre is designed and fabricated. Coupling efficiencies of 46% and 25% at a wavelength of 1.55um are achieved by simulation and experiment, respectively. An optical 3 dB bandwidth of 45 mn from 1530 nm to 1575 nm is also obtained in experin, ent. Numerical calculation shows that a tolerance to fabrication error of 10 nm in etch depth is achievable. The measurement results indicate that the alignment error of 112 um results in less than 1 dB additional coupling loss.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61771434,91123036,61178058,61275166,and 61076111)the National Science Fund for Distinguished Young Scholars,China(Grant No.51225504)
文摘The coupled resonator-induced transparency (CRIT) phenomenon, which is analogous to electromagnetically induced transparency in atomic systems, can occur in an original integrated optical resonator system due to the coherent interference of the coupled optical resonators. The system was composed of three ring resonators on silicon, each with the same cavity size, and the optical coupling to the input and output ports was achieved using grating with a power coupling efficiency of 36%. A CRIT resonance whose spectrum shows a narrow transparency peak with a low group velocity was demonstrated. The quality factor of the ring resonator can attain a value up to 6x 104, and the harmonic wavelength can be controlled by adjusting the temperature. The through and drop transmission spectra of the resonator are reconciled well with each other and also consistent well with the theoretical analysis.
基金Supported by the National Natural Science Foundation of China under Grant No 11774374the Natural Science Foundation of Shandong Province of China under Grant No ZR2016AL10
文摘We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forward scattering dominates. At the same time, this model provides an efficiency gain of an order of magnitude or more over two-way coupled-mode models. This model can be applied to three-dimensional range-dependent problems with a slowly varying bathymetry or internal waves. A numerical example of the latter is demonstrated in this work. Comparisons of both accuracy and efficiency between the present model and a benchmark model are also provided.
文摘Theoretical analyses have been performed to describe the coupling losses for a plane mirror in rectangular waveguide resonator for an arbitrary waveguide mode as a function of the Fresnel number for several values of the aspect ratio by using Fresnel approximation.
文摘We have carried out the hohlraum experiments about radiation temperature scaling on the Shenguang-Ⅱ (SG- Ⅱ) laser facility with eight laser beams of 0.35#m, pulse duration of about 1.0ns and total energy of 2000J. The reradiated x-ray flux through the laser entrance hole was measured using a soft x-ray spectrometer. The measured peak radiation temperature was 170eV for the standard hohlraum and 150 eV for the 1.5-scaled one. We have derived the radiation temperature scaling law, in which the laser hohlraum coupling efficiency is included. With an appropriate coupling efficiency, the coincidences between experimental and scaling hohlraum radiation temperatures are rather good.
基金supported by the National Fundamental Research Program of China(Contact No.11475033 and 11405011)CAEP(Contact No.2013A0102002).
文摘In this paper,we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study.From our theoretical study,the octahedral spherical hohlraums with 6 Laser Entrance Holes(LEHs)of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7.In addition,the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology.We studied the laser arrangement and constraints of the octahedral spherical hohlraums,and gave a design on the laser arrangement for ignition octahedral hohlraums.As a result,the injection angle of laser beams of 50°-60°was proposed as the optimum candidate range for the octahedral spherical hohlraums.We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields,in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport.We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums,the rugby hohlraums and the cylindrical hohlraums,and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive.Up till to now,we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG)laser facilities,including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums,spherical hohlraum energetics on the SGIII prototype laser facility,and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.
基金Project(51475479) supported by the National Natural Science Foundation of ChinaProject(2017YFB1104800) supported by the National Key Research and Development Program of China+2 种基金Project(2016GK2098) supported by the Key Research and Development Program of Hunan Province,ChinaProject(ZZYJKT2017-07) supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,ChinaProject(JMTZ201804) supported by the Key Laboratory for Precision&Non-traditional Machining of Ministry of Education,Dalian University of Technology,China
文摘Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.
文摘The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode field distribution pattern is obtained through the different kinds of driving sources. It is found that the optical field mode is determined by waveguide structure and optical wavelength other than the driving source.According to the mode field distribution, the optimum coupling efficiency can be predicted. Compared with another numerical methods,the CPU-time and memory elements of computer used by FDTD are much less.
基金This research is financial supported by the Natural National Science Foundation of China(Grant Nos.11874364,41877311,and 42005107)the National Key Research and Development Program of China(Grant No.2017YFC0805004)the CAS&Bengbu Technology Transfer Project(Grant No.ZKBB202102).
文摘Continuous-wave cavity ring-down spectroscopy(CW-CRDS)is an important technical means to monitor greenhouse gases in atmospheric environment.In this paper,a CW-CRDS system is built to meet the needs of atmospheric methane monitoring.The problem of mode matching is explained from the perspective of transverse mode and longitudinal mode,and the influence of laser injection efficiency on measurement precision is further analyzed.The results of cavity ring-down time measurement show that the measurement precision is higher when the laser is coupled with the fundamental mode.In the experiment,DFB laser is used to calibrate the system with standard methane concentration,and the measurement residual is less than±4×10^(-4)μs^(-1).The methane concentration in the air is monitored in real time for two days.The results show the consistency of the concentration changes over the two days,which further demonstrates the reliability of the system for the measurement of trace methane.By analyzing the influence of mode matching,it not only assists the adjustment of the optical path,but also further improves the sensitivity of the system measurement.
基金Projects(51005074, 91123035) supported by the National Natural Science Foundation of China Project(201021200077) supported by the Frontier Research Program of Central South University, China
文摘After reviewing three different definitions of mode field diameter of single-mode fibers, coupled efficiency calculation methods associated with lateral offset, longitude separation and wavelength, the effects produced by them, and the influences of splicing defects were discussed in detail. The regularities of the effects were studied according to the first order derivation of couple efficiency formula, and a simplified formula for couple efficiency calculation was presented under the circumstance of slight misalignment, with respect to wavelength, 2, and in a good agreement with the theoretical model. The simplified formula provides a new but simple approach to evaluate wavelength dependent couple efficiency of single-mode fibers. Theoretical analyses and numerical calculations show that, when those defects exist, the wavelength produces additional effects on the couple loss that growth of wavelength causes an increase on the couple efficiency for the lateral offset or longitude separation whereas lessens the couple efficiency due to angular misalignment or mode fields mismatching, and that the wavelength degrades the couple efficiency distinctly when λ≥2.5 μm whereas it distorts the couple slightly in range of λ≤2λ≤2 μm.
文摘Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performance of the filter is investigated using finite-difference time-domain (FDTD) method, and the results show that within a very short coupling distance of about 3λ, where ), is the wavelength of signal in vacuum, the incident signals with different frequencies are separated into different channels with a contrast ratio of 20 dB. The advantages of this kind of filter are small size and easily tunable operation frequencies.
文摘Polypropylene microporous membranes were treated with plasma in a mixture of N2 and H2 (1:2 in volume). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT1R), X-ray photoelectron spectroscopy (XPS) and ultra-violet (UV) spectra demonstrated the success of grafting amino groups. The density of the polar amino groups on the membrane surface is about 0.59 μmol/cm2. The as-treated membranes were successively applied to the in situ synthesis of oligonucleotides and an average coupling yield was more than 98%. The surface feature of the treated membrane is suggested to be responsible for its advantage over a glass slide.
基金supported by the National Natural Science Foundation of China(Grant Nos.61222501,61335004,and 61505003)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111103110019)+1 种基金the Postdoctoral Science Foundation of Beijing Funded Project,China(Grant No.Q6002012201502)the Science and Technology Research Project of Jiangxi Provincial Education Department,China(Grant No.GJJ150998)
文摘A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency.Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer.
文摘A novel substrate for in situ synthesis of oligonucleotide was prepared by hydrolyzing microporous polyamide-6 membranes in a 0.01mol/L NaOH/(H2O-CH3OH) mixture medium. The formation of amines (NH2) on the surface was proved by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The treated membrane was applied for in situ synthesis of oligonucleotide and a single step coupling efficiency determined by ultraviolet (UV) spectra was above 98 %.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0205700 and 2015CB932403)the National Natural Science Foundation of China(Grant Nos.11174062,51472057,and 21790364)
文摘Wavelength demultiplexing waveguide couplers have important applications in integrated nanophotonic devices. Two of the most important indicators of the quality of a wavelength demultiplexing coupler are coupling efficiency and splitting ratio. In this study, we utilize two asymmetric high-index dielectric nanoantennas directly positioned on top of a silicon-on insulator waveguide to realize a compact wavelength demultiplexing coupler in a communication band, which is based on the interference of the waveguide modes coupled by the two nanoantennas. We add a Au substrate for further increasing the coupling efficiency. This has constructive and destructive influences on the antenna's in-coupling efficiency owing to the Fabry-Perot(FP) resonance in the SiO2 layer. Therefore, we can realize a wavelength demultiplexing coupler with compact size and high coupling efficiency. This coupler has widespread applications in the areas of wavelength filters,on-chip signal processing, and integrated nanophotonic circuits.
基金Youth Science and Technology Research Foundation of Shanxi Province(No.2015021104)Programs for Science and Technology Development of Shanxi Province(No.201703D121028-2)
文摘According to the principle of choosing the light source in the fiber optic sensing measurement,semiconductor laser is used as the light source of fiber optic sensor and single-mode fiber is used as the tail fiber of light source. Based on optical design software Zemax’s pure non-sequential components,a coupling system of semiconductor laser and single-mode fiber is designed. By analyzing the beam characteristics of the semiconductor laser and the coupled mode theory of semiconductor laser and single-mode fiber,the combined lens consists of a ball lens and a collimating lens for the purpose of improving the coupling efficiency and adjusting tolerance. The simulation results show that the coupling efficiency can reach about 78% by using one million ray traces on non-sequential components,while the experimental test result is 69.11%,accordingly,the reasons for the difference between the experiment and the simulation results are analyzed.
基金supported by National Natural Science Foundation of China(No.91741105)Chongqing Municipal Natural Science Foundation(No.cstc2018jcyjAX0625)Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.CXTDX201601011)。
文摘Urea plays a vital role in the sustainable development of mankind as it is one of the most important nitrogen fertilizers.Conventional synthesis of urea is accompanied by a high level of energy consumption while electrocatalytic methods suffer from low yields and poor selectivity.Our work achieves efficient synthesis of urea by designing the graphene-In_(2)O_(3)electrocatalysts for the co-activated reduction of nitrate and carbon dioxide,where the formation rate of urea,Faraday efficiency(FE)and carbon selectivity at-0.35 V vs.RHE can reach 357.47μg mg^(-1)h^(-1),10.46%and~100%,respectively.Herein,the key intermediates in the C–N coupling reaction are demonstrated to be*NH_(2)and*CO_(2),which is of novelty compared to previous reports.This work may provide inspiration for subsequent studies on the reaction mechanism of the electrochemical synthesis of urea,as well as theoretical guidance for the sustainable synthesis of some other important chemical substances.
基金Sponsored by National Natural Science Foundation of China (51075353)Hebei Natural Science Foundation of China (E2010001208)
文摘In order to simulate and analyze hot strip crown and flatness accurately and efficiently, the 3-D (three-di- mensional) coupled model involved in RPFEM (rigid-plastic finite element method) is improved based on the analyti- cal model of forecasting rolling force distribution. In the analytical model, variational method is employed to solve the lateral flow of metal and influential function method is employed to calculate roll deflection, the lateral distribution of rolling force can be obtained rapidly by iterative strategy. Then the 3-D coupled model uses the result as initial distri- bution of rolling force to calculate roll deflection and makes the initial on-load roll gap profile close to the final value, so as to reduce iterations and increase efficiency. Compared with previous algorithms, the improved model can reduce the iterations by about 50% and shorten the computing time by about 60% on the basis of the calculation accuracy.