Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona...Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.展开更多
Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method us...Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.展开更多
A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials...A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials.This model incorporates a heat conduction model that can accurately calculate the thermal field in continuousediscontinuous transition processes within a finite element framework.A modified contact heat transfer model is also included,which accounts for the entire contact area of discrete bodies.To align with the finite strain theory utilized in the FDEM mechanics module,the TM coupling module in the model is based on the multiplicative decomposition of the deformation gradient.The proposed model has been applied to various scenarios,including heat conduction in both continuous and discontinuous media during transient states,thermal-induced strain and stress,and thermal cracking conditions.The thermal field calculation model and the TM coupling model have been validated by comparing the numerical results with experiment findings and analytical solutions.These numerical cases demonstrate the reliability of the proposed model convincingly,making it suitable for use across a wide range of continuous and discontinuous media.展开更多
This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discret...This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discrete element method code(FDEM)for multi-physics simulation.The governing equations are deduced based on energy and mass conservation,and static equilibrium equations,considering water/ice phase change,where the strong couplings between multi-fields are supplemented by critical coupling parameters(e.g.unfrozen water content,permeability,and thermal conductivity).The proposed model is validated against laboratory and field experiments.Results show that the cryogenic THM model can well predict the evolution of strongly coupled processes observed in frozen media(e.g.heat transfer,water migration,and frost heave deformation),while also capturing,as emergent properties of the model,important phenomena(e.g.latent heat,cryogenic suction,ice expansion and distinct three-zone distribution)caused by water/ice phase change at laboratory and field scales,which are difficult to be all revealed by existing THM models.The novel modeling framework presents a gateway to further understanding and predicting the multi-physical coupling behavior of frozen media in cold regions.展开更多
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the...In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale.展开更多
Rockbursting in deep tunnelling is a complex phenomenon posing significant challenges both at the design and construction stages of an underground excavation within hard rock masses and under high in situ stresses. Wh...Rockbursting in deep tunnelling is a complex phenomenon posing significant challenges both at the design and construction stages of an underground excavation within hard rock masses and under high in situ stresses. While local experience, field monitoring, and informed data-rich analysis are some of the tools commonly used to manage the hazards and the associated risks, advanced numerical techniques based on discontinuum modelling have also shown potential in assisting in the assessment of rockbursting. In this study, the hybrid finite-discrete element method(FDEM) is employed to investigate the failure and fracturing processes, and the mechanisms of energy storage and rapid release resulting in bursting, as well as to assess its utility as part of the design process of underground excavations.Following the calibration of the numerical model to simulate a deep excavation in a hard, massive rock mass, discrete fracture network(DFN) geometries are integrated into the model in order to examine the impact of rock structure on rockbursting under high in situ stresses. The obtained analysis results not only highlight the importance of explicitly simulating pre-existing joints within the model, as they affect the mobilised failure mechanisms and the intensity of strain bursting phenomena, but also show how the employed joint network geometry, the field stress conditions, and their interaction influence the extent and depth of the excavation induced damage. Furthermore, a rigorous analysis of the mass and velocity of the ejected rock blocks and comparison of the obtained data with well-established semi-empirical approaches demonstrate the potential of the method to provide realistic estimates of the kinetic energy released during bursting for determining the energy support demand.展开更多
Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed ...Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed.展开更多
An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is stud...An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.展开更多
The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a ...The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.展开更多
This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs i...This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.展开更多
Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid ...Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element met...The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element method and the finite difference method). By matching the theoretical calculation to an experiment, the nonlinear problem was analyzed and the variable thermophysical parameters concerned was evaluated. The analysis procedure and the evaluation of the parameters were presented in detail. The result of the study showed that by using the method as described in the paper, it was possible to determine the variable (with respect to temperature, moisture content and freezing state) thermophysical parameters which were unknown or difficult to measure as long as the governing equations for a considered process were available. The method can significantly reduces the experiment efforts for determining thermophysical parameters which arc very complicated to measure. The determined variable of the effective heat conductivity of wood particle material was given in the paper. The error of the numerical calculation was also estimated by the comparison with a matched experiment.展开更多
Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irr...Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irregular shapes are constructed using a clump model using the discrete element method.Meanwhile,concrete sleepers,embankments,and foundations are modelled using 20-node hexahedron solid elements using the finite element method.To improve computational efficiency,a GPU-based(Graphics Processing Unit)parallel framework is applied in the discrete element simulation.Additionally,an algorithm containing contact search and transfer parameters at the contact interface of discrete particles and finite elements is developed in the GPU parallel environment accordingly.A benchmark case is selected to verify the accuracy of the coupling algorithm.The dynamic response of the ballasted rail track is analysed under different train speeds and loads.Meanwhile,the dynamic stress on the substructure surface obtained by the established DEM-FEM model is compared with the in situ experimental results.Finally,stress and displacement contours in the cross-section of the model are constructed to further visualise the response of the ballasted railway.This proposed coupling model can provide important insights into high-performance coupling algorithms and the dynamic characteristics of full scale ballasted rail tracks.展开更多
In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N<...In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N</em> ∈ {2,3}, on isotropic meshes. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The approach utilizes a modification of the Darcy problem which allows us to apply a variant nonconforming Crouzeix-Raviart finite element to the whole coupled Stokes-Darcy problem. The well-posedness of the finite element scheme and its convergence analysis are derived. Finally, the numerical experiments are presented, which confirm the excellent stability and accuracy of our method.展开更多
The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditiona...The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditional mesh oriented methods such as the finite difference method (FDM) and the finite element method (FEM), this method needs only scattered nodes in the domain. For this scheme, a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method. In numerical experiments, the results are presented and compared with the findings of the finite element method, the radial basis functions method, and an analytical solution to confirm the good accuracy of the presented scheme.展开更多
A numerical method for coupled deformation between sheet metal and flexible-die was proposed. Based on the updated Lagrangian (UL) formulation, the elastoplastic deformation of sheet metal was analyzed with finite e...A numerical method for coupled deformation between sheet metal and flexible-die was proposed. Based on the updated Lagrangian (UL) formulation, the elastoplastic deformation of sheet metal was analyzed with finite element method (FEM) and the bulk deformation of flexible-die was analyzed with element-free Galerkin method (EFGM). The frictional contact between sheet metal and flexible-die was treated by the penalty function method. The sheet elastic flexible-die bulging process was analyzed with the FEM-EFGM program for coupled deformation between sheet metal and bulk flexible-die, called CDSB-FEM-EFGM for short. Compared with finite element code DEFORM-2D and experiment results, the CDSB-FEM-EFGM program is feasible. This method provides a suitable numerical method to analyze sheet flexible-die forming.展开更多
Mechanical cutting provides one of the most flexible and environmentally friendly excavation methods.It has attracted numerous efforts to model the rock chipping and fragmentation process,especially using the explicit...Mechanical cutting provides one of the most flexible and environmentally friendly excavation methods.It has attracted numerous efforts to model the rock chipping and fragmentation process,especially using the explicit finite element method(FEM) and bonded particle model(BPM),in order to improve cutting efficiency.This study investigates the application of a general-purpose graphic-processing-unit parallelised hybrid finite-discrete element method(FDEM) which enjoys the advantages of both explicit FEM and BPM,in modelling the rock chipping and fragmentation process in the rock scratch test of mechanical rock cutting.The input parameters of FDEM are determined through a calibration procedure of modelling conventional Brazilian tensile and uniaxial compressive tests of limestone,A series of scratch tests with various cutting velocities,cutter rake angles and cutting depths is then modelled using FDEM with calibrated input parameters.A few cycles of cutter/rock interactions,including their engagement and detachment process,are modelled for each case,which is conducted for the first time to the best knowledge of the authors,thanks to the general purpose graphic processing units(GPGPU) parallelisation.The failure mechanism,cutting force,chipping morphology and effect of various factors on them are discussed on the basis of the modelled results.Finally,it is concluded that GPGPU-parallelised FDEM provides a powerful tool to further study rock cutting and improve cutting efficiencies since it can explicitly capture different fracture mechanisms contributing to the rock chipping as well as chip formation and the separation process in mechanical cutting.Moreover,it is concluded that chipping is mostly owed to the mix-mode Ⅰ-Ⅱ fracture in all cases although mode Ⅱ cracks and mode Ⅰ cracks are the dominant failures in rock cutting with shallow and deep cutting depths,respectively.The chip morphology is found to be a function of cutter velocdty,cutting depth and cutter rake angle.展开更多
In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research gr...In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics.Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples.展开更多
In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variat...In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.展开更多
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the...Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.展开更多
文摘Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.
基金National Key Research and Development Program of China under Grant Nos. 2018YFC1504400 and 2019YFC1509301Natural Science Foundation of China under Grant No. 52078471Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No. 19EEEVL0402
文摘Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.
基金supported by the Research Grants Council of Hong Kong (General Research Fund Project Nos.17200721 and 17202423)the National Natural Science Foundation of China (Grant No.42377149).
文摘A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials.This model incorporates a heat conduction model that can accurately calculate the thermal field in continuousediscontinuous transition processes within a finite element framework.A modified contact heat transfer model is also included,which accounts for the entire contact area of discrete bodies.To align with the finite strain theory utilized in the FDEM mechanics module,the TM coupling module in the model is based on the multiplicative decomposition of the deformation gradient.The proposed model has been applied to various scenarios,including heat conduction in both continuous and discontinuous media during transient states,thermal-induced strain and stress,and thermal cracking conditions.The thermal field calculation model and the TM coupling model have been validated by comparing the numerical results with experiment findings and analytical solutions.These numerical cases demonstrate the reliability of the proposed model convincingly,making it suitable for use across a wide range of continuous and discontinuous media.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)Discovery Grants 341275,NSERC CRDPJ 543894-19,and NSERC/Energi Simulation Industrial Research Chair programfunding he received from Lassonde International Graduate Scholarship in Mining at the University of Toronto+1 种基金supported by the FCE Start-up Fund for New Recruits at the Hong Kong Polytechnic University (P0034042)the Early Career Scheme and the General Research Fund Scheme of the Research Grants Council of the Hong Kong SAR,China (Project Nos.PolyU 25220021 and PolyU 15227222).
文摘This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discrete element method code(FDEM)for multi-physics simulation.The governing equations are deduced based on energy and mass conservation,and static equilibrium equations,considering water/ice phase change,where the strong couplings between multi-fields are supplemented by critical coupling parameters(e.g.unfrozen water content,permeability,and thermal conductivity).The proposed model is validated against laboratory and field experiments.Results show that the cryogenic THM model can well predict the evolution of strongly coupled processes observed in frozen media(e.g.heat transfer,water migration,and frost heave deformation),while also capturing,as emergent properties of the model,important phenomena(e.g.latent heat,cryogenic suction,ice expansion and distinct three-zone distribution)caused by water/ice phase change at laboratory and field scales,which are difficult to be all revealed by existing THM models.The novel modeling framework presents a gateway to further understanding and predicting the multi-physical coupling behavior of frozen media in cold regions.
基金the National Natural Science Foundation of China(Nos.11872216 and 12272192)the Natural Science Foundation of Zhejiang Province(No.LY22A020002)+2 种基金the Natural Science Foundation of Ningbo City(No.202003N4083)the Scientific Research Foundation of Graduate School of Ningbo UniversityNingbo Science and Technology Major Project(No.2022Z002)。
文摘In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale.
文摘Rockbursting in deep tunnelling is a complex phenomenon posing significant challenges both at the design and construction stages of an underground excavation within hard rock masses and under high in situ stresses. While local experience, field monitoring, and informed data-rich analysis are some of the tools commonly used to manage the hazards and the associated risks, advanced numerical techniques based on discontinuum modelling have also shown potential in assisting in the assessment of rockbursting. In this study, the hybrid finite-discrete element method(FDEM) is employed to investigate the failure and fracturing processes, and the mechanisms of energy storage and rapid release resulting in bursting, as well as to assess its utility as part of the design process of underground excavations.Following the calibration of the numerical model to simulate a deep excavation in a hard, massive rock mass, discrete fracture network(DFN) geometries are integrated into the model in order to examine the impact of rock structure on rockbursting under high in situ stresses. The obtained analysis results not only highlight the importance of explicitly simulating pre-existing joints within the model, as they affect the mobilised failure mechanisms and the intensity of strain bursting phenomena, but also show how the employed joint network geometry, the field stress conditions, and their interaction influence the extent and depth of the excavation induced damage. Furthermore, a rigorous analysis of the mass and velocity of the ejected rock blocks and comparison of the obtained data with well-established semi-empirical approaches demonstrate the potential of the method to provide realistic estimates of the kinetic energy released during bursting for determining the energy support demand.
文摘Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed.
基金The China Ocean Mineral Resources Research and Development Association Research Program of the State Oceanic Administration of China under contract No.DY125-13-R-07the National Natural Science Foundation of China under contract Nos 41322036 and 41230960+1 种基金the Shandong Provincial Natural Science Foundation of China under contract No.ZR2014DP009the Special Basic Research Funds for Central Public Research Institutes for The First Institute of Oceanography,State Oceanic Administration of China under contract Nos GY0213G06 and GY02-2012G35
文摘An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.
基金supported by the National Basic Research Program of China (Grant 2013CB733004)
文摘The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974115)
文摘This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.
基金supported by the Natural Sciences and Engineering Research Council of Canada through Discovery Grant 341275 (G. Grasselli) and Engage EGP 461019-13
文摘Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element method and the finite difference method). By matching the theoretical calculation to an experiment, the nonlinear problem was analyzed and the variable thermophysical parameters concerned was evaluated. The analysis procedure and the evaluation of the parameters were presented in detail. The result of the study showed that by using the method as described in the paper, it was possible to determine the variable (with respect to temperature, moisture content and freezing state) thermophysical parameters which were unknown or difficult to measure as long as the governing equations for a considered process were available. The method can significantly reduces the experiment efforts for determining thermophysical parameters which arc very complicated to measure. The determined variable of the effective heat conductivity of wood particle material was given in the paper. The error of the numerical calculation was also estimated by the comparison with a matched experiment.
基金supported by the National Natural Science Foundation of China(Grant Nos.11872136,11802146,11772085)the Fundamental Research Funds for the Central Universities(Grant Nos.DUT19GJ206,DUT19ZD207).
文摘Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irregular shapes are constructed using a clump model using the discrete element method.Meanwhile,concrete sleepers,embankments,and foundations are modelled using 20-node hexahedron solid elements using the finite element method.To improve computational efficiency,a GPU-based(Graphics Processing Unit)parallel framework is applied in the discrete element simulation.Additionally,an algorithm containing contact search and transfer parameters at the contact interface of discrete particles and finite elements is developed in the GPU parallel environment accordingly.A benchmark case is selected to verify the accuracy of the coupling algorithm.The dynamic response of the ballasted rail track is analysed under different train speeds and loads.Meanwhile,the dynamic stress on the substructure surface obtained by the established DEM-FEM model is compared with the in situ experimental results.Finally,stress and displacement contours in the cross-section of the model are constructed to further visualise the response of the ballasted railway.This proposed coupling model can provide important insights into high-performance coupling algorithms and the dynamic characteristics of full scale ballasted rail tracks.
文摘In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N</em> ∈ {2,3}, on isotropic meshes. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The approach utilizes a modification of the Darcy problem which allows us to apply a variant nonconforming Crouzeix-Raviart finite element to the whole coupled Stokes-Darcy problem. The well-posedness of the finite element scheme and its convergence analysis are derived. Finally, the numerical experiments are presented, which confirm the excellent stability and accuracy of our method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11072117 and 61074142)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6110007)+3 种基金Scientific Research Fund of Zhejiang Provincial Education Department,China(Grant No.Z201119278)the Natural Science Foundation of Ningbo City(Grant Nos.2012A610152 and 2012A610038)the Disciplinary Project of Ningbo City,China(Grant No.SZXL1067)K.C.Wong Magna Fund in Ningbo University
文摘The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditional mesh oriented methods such as the finite difference method (FDM) and the finite element method (FEM), this method needs only scattered nodes in the domain. For this scheme, a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method. In numerical experiments, the results are presented and compared with the findings of the finite element method, the radial basis functions method, and an analytical solution to confirm the good accuracy of the presented scheme.
基金Project(51275130)supported by the National Natural Science Foundation of China
文摘A numerical method for coupled deformation between sheet metal and flexible-die was proposed. Based on the updated Lagrangian (UL) formulation, the elastoplastic deformation of sheet metal was analyzed with finite element method (FEM) and the bulk deformation of flexible-die was analyzed with element-free Galerkin method (EFGM). The frictional contact between sheet metal and flexible-die was treated by the penalty function method. The sheet elastic flexible-die bulging process was analyzed with the FEM-EFGM program for coupled deformation between sheet metal and bulk flexible-die, called CDSB-FEM-EFGM for short. Compared with finite element code DEFORM-2D and experiment results, the CDSB-FEM-EFGM program is feasible. This method provides a suitable numerical method to analyze sheet flexible-die forming.
基金the support of CSIRO and the Australia-Japan Foundation(Grant No.17/20470)supported by the Japan Society for the Promotion of Science KAKENHI(Grant No.JP18K14165)for Grant-in-Aid for Young Scientists。
文摘Mechanical cutting provides one of the most flexible and environmentally friendly excavation methods.It has attracted numerous efforts to model the rock chipping and fragmentation process,especially using the explicit finite element method(FEM) and bonded particle model(BPM),in order to improve cutting efficiency.This study investigates the application of a general-purpose graphic-processing-unit parallelised hybrid finite-discrete element method(FDEM) which enjoys the advantages of both explicit FEM and BPM,in modelling the rock chipping and fragmentation process in the rock scratch test of mechanical rock cutting.The input parameters of FDEM are determined through a calibration procedure of modelling conventional Brazilian tensile and uniaxial compressive tests of limestone,A series of scratch tests with various cutting velocities,cutter rake angles and cutting depths is then modelled using FDEM with calibrated input parameters.A few cycles of cutter/rock interactions,including their engagement and detachment process,are modelled for each case,which is conducted for the first time to the best knowledge of the authors,thanks to the general purpose graphic processing units(GPGPU) parallelisation.The failure mechanism,cutting force,chipping morphology and effect of various factors on them are discussed on the basis of the modelled results.Finally,it is concluded that GPGPU-parallelised FDEM provides a powerful tool to further study rock cutting and improve cutting efficiencies since it can explicitly capture different fracture mechanisms contributing to the rock chipping as well as chip formation and the separation process in mechanical cutting.Moreover,it is concluded that chipping is mostly owed to the mix-mode Ⅰ-Ⅱ fracture in all cases although mode Ⅱ cracks and mode Ⅰ cracks are the dominant failures in rock cutting with shallow and deep cutting depths,respectively.The chip morphology is found to be a function of cutter velocdty,cutting depth and cutter rake angle.
基金The project supported by the 973 Program (G1999033108)the National Natural Science Foundation of China (10125211)
文摘In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics.Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples.
文摘In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.
基金National Natural Sciences Foundation(60474043)Henan Province Science Fund for Distinguished Young Scholars(0412002200)Henan Province Major Projects(0223025300)
文摘Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.