期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation and Experimental Study of Heat-fluid-solid Coupling of Double Flapper-nozzle Servo Valve 被引量:18
1
作者 ZHAO Jianhua ZHOU Songlin +1 位作者 LU Xianghui GAO Dianrong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期1030-1038,共9页
The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo val... The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve. 展开更多
关键词 double flapper-nozzle servo valve heat-fluid-solid coupling numerical simulation warpage-deformation clamping stagnation zero position leakage
下载PDF
3D numerical simulation of boreholes for gas drainage based on the pore–fracture dual media 被引量:5
2
作者 Wei Jianping Li Bo +1 位作者 Wang Kai Sun Donghui 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期739-744,共6页
A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeab... A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeability dynamic evolution was established by analyzing the variation in effective stress during gas drainage and the action mechanism of the effect of coal matrix desorption on porosity and fracture in the coal body.A coupling model can then be obtained to characterize gas compressibility and coal deformability under the gas–solid coupling of loading coal.In addition,a 3D model of boreholes was established and solved for gas drainage based on the relevant physical parameters of real mines.The comparison and analysis results for the law of gas migration and the evolution of coal body permeability around the boreholes before and after gas extraction between the dual media and the single-seepage field models can provide a theoretical basis for further research on the action mechanism of gas drainage. 展开更多
关键词 Pore-fracture Matrix exchange Coupling model numerical simulation Gas drainage
下载PDF
2D Coupled 3D:A New Numerical Model for Dual - Structured - Aquifer System
3
作者 Chen Chongxi Fang Shuzhen Lin Min(Faculty of Environmental Science and Geotechnique,China University of Geosciehces, Wuhan 430074) 《Journal of Earth Science》 SCIE CAS CSCD 1995年第1期114-117,共4页
This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -... This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -3D ) is presented in the Present paper,which is the most suitable one for the dual - structured - aquifer system. An example of Wenyinghu area is shown.By using the 2D-3D model, a satisfied result of the simulated area is achieved. 展开更多
关键词 numerical simulation conceptional model two dimensional coupled threedimensional model (2D - 3D ) dual - structured- aquifer system Wenyinghu area.
下载PDF
Controlling Roll Temperature by Fluid-Solid Coupled Heat Transfer 被引量:2
4
作者 Jing-Feng Zou Li-Feng Ma +3 位作者 Guo-Hua Zhang Zhi-Quan Huang Jin-Bao Lin Peng-Tao Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期66-79,共14页
Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; theref... Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process. 展开更多
关键词 Magnesium alloy Fluid heating Heat transfer model numerical simulation of fluid?solid coupling
下载PDF
Research on valve core’s clamping stagnation of double flapper-nozzle servo valve 被引量:1
5
作者 Zhao Jianhua Zhang Bin +3 位作者 Chen Tao Wang Qiang Zhou Songlin Gao Dianrong 《High Technology Letters》 EI CAS 2019年第1期65-73,共9页
Due to great changing of instantaneous temperature of hydraulic oil of double flapper-nozzle servo valve, thermal deformation between valve core and valve sleeve may result in catching phenomenon of valve core, and th... Due to great changing of instantaneous temperature of hydraulic oil of double flapper-nozzle servo valve, thermal deformation between valve core and valve sleeve may result in catching phenomenon of valve core, and then the reliability of servo valve could be affected seriously. The work focuses on a particular model of double flapper-nozzle servo valve and establishes three dimension couple models of liquid-solid-thermal under extreme operating condition. The transmission route and dissipative mechanism of heat is revealed and thermal deformation behavior of valve core and valve sleeve is researched. A change law of the key fit clearance under the effect of thermal expansion and warp deformation is explored, the source of catching phenomenon of valve core is identified, and then preventive measure and improvement can be proposed. In order to verify the correctness of theoretical analysis, the moving smoothness of deformed valve core and reground valve core under the circumstance of high-temperature hydraulic oil on electrohydraulic servo valve static characteristics test table is compared and tested. The results show that as oil temperature rises, relative deformations between valve core and valve sleeve in different direction at a same cross-section are not equal, and then the key fit clearance is less than the initial value. Relative deformations in the same direction at different axial position are not equal, the deformations of middle and two ends are maximum and minimum values respectively, and then warp deformation of valve core occurs. When oil temperature is higher, the relative deformations between valve core and valve sleeve is larger, the moving smoothness of valve core gets worse, and the catching phenomenon of valve core occurs. Axial deformation of valve sleeve and valve core at different axial position is different, and the opening coefficient and stability of servo valve could be affected, especially the operation circumstance of small opening. The study can provide some guidance for designing double nozzle flapper servo valves. 展开更多
关键词 double flapper-nozzle servo valve flow-solid-thermal coupling numerical simulation catching phenomenon thermal deformation mechanism smooth movement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部