Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution o...Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution of continental margin, can be used to interpret the geological process of basin-range conversion and reconstruct early prototype basins, which is a difficult and leadin~ scientific oroblem of basin research.展开更多
The widespread organic pollutants in wastewater are one of the global environmental problems.Advanced oxidation processes(AOPs)are widely used because of their characteristics of high efficiency and strong oxidation.H...The widespread organic pollutants in wastewater are one of the global environmental problems.Advanced oxidation processes(AOPs)are widely used because of their characteristics of high efficiency and strong oxidation.However,AOPs may have some defects,such as incomplete mineralization of organic pollutants and the generation of toxic by-products during the degradation process,thus it is essential to seek efficient and green wastewater treatment technologies.Coupling different AOPs or other processes is beneficial for the mineralization of pollutants and reduces ecological risks to the environment.It is worth noting that carbonaceous materials(CMs)have received widespread attention and application in the degradation of organic pollutants in water by advanced oxidation coupling processes(C-AOPs)due to their excellent physicochemical properties in recent years.However,the behaviors and mechanisms of C-AOPs based on CMs on the degradation of organic pollutants are still unknown.Therefore,it is essential to comprehensively summarize the recent research progress.In this review,the applications of different CMs in C-AOPs were reviewed first.Secondly,the synergistic mechanisms of the C-AOPs based on different CMs were discussed.Then,toxic intermediates were explored and important toxicity assessment methods were proposed.Finally,the application potential of the C-AOPs in the future and the challenges were proposed.This review provides an important reference for the application and optimization of the C-AOPs in organic wastewater treatment in the future.展开更多
The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the def...The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the deformation gradient, the enhanced as- sumedstrain(EAS)FEM was applied to carry out the numerical simulation. Inorder to make the computation reliable ad avoid hour- glass mode inthe EAS element under large compressive strains, an alterative formof the original enhanced deformation gradient was employed. Inaddition, reduced factors were used in the computation of the elementlocal internal parameters and the enhanced part of elementalstiffness.展开更多
The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic re...The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic reaction is constrained by thermodynamic equilibrium and involves a complex reaction network, leading to a heightened focus on catalysts and process design. Copper-based catalysts have been extensively studied and exhibit exceptional low-temperature catalytic performance in cyclohexanol dehydrogenation, with some being commercially used in the industry. This paper specifically concentrates on research advancement concerning active species, reaction mechanisms, factors influencing product selectivity, and the deactivation behaviors of copper-based catalysts. Moreover, a brief introduction to the new processes that break thermodynamic equilibrium via reaction coupling and their corresponding catalysts is summarized here as well. These reviews may off er guidance and potential avenues for further investigations into catalysts and processes for cyclohexanol dehydrogenation.展开更多
The West Antarctic Peninsula(WAP)region is one of the most productive marine ecosystems in the Southern Ocean that support the food web for phytoplankton,krill spawning or recruitment and several krill consumers at hi...The West Antarctic Peninsula(WAP)region is one of the most productive marine ecosystems in the Southern Ocean that support the food web for phytoplankton,krill spawning or recruitment and several krill consumers at higher-trophic level like penguins and Antarctic fur seals.Characterized by channels and islands,the complex topography of the WAP generates interconnected circulation patterns,strongly influencing vertical stratification,nutrient availability and distribution of marine organisms.Additionally,rapid climate change associated with major climate modes like the Southern Annular Mode(SAM)and El Niño-Southern Oscillation(ENSO)has significant effects on long-term variations of physical environments and biological production.The objective of this study is to reveal the spatial-temporal variations of phytoplankton biomass in the WAP region and the modulating physical-ecological processes.By using 9-year hydrographic and ecological data of five transects collected by the Palmer Long-Term Ecosystem Research,the horizontal and vertical distributions of several physical and ecological properties,with a particular focus on chlorophyll(Chl)concentration were explored.Regression analysis among area-averaged properties and properties at single stations was performed to reveal the relationship between the interannual variations of physical and ecological processes.The correlation results showed that Chl concentration exhibited a positive relationship with both the circumpolar deep water(CDW)intrusion and vertical stratification,but showed a negative correlation with SAM at some specific stations.However,certain processes or mechanisms may only be dominant for specific stations and not applicable to the entire region.No single physical or ecological factors have been found to significantly influence the Chl distribution throughout the WAP region,which may be attributed to the heterogeneity of sea ice conditions,geometry and hydrodynamic features as well as variations in nutrient sources.展开更多
The relativistic neutrino emissivity of the nucleonic direct URCA processes in neutron star matter is investigated within the relativistic Hartree-Fock approximation. We particularly study the influences of the tensor...The relativistic neutrino emissivity of the nucleonic direct URCA processes in neutron star matter is investigated within the relativistic Hartree-Fock approximation. We particularly study the influences of the tensor couplings of vector mesons ω and ρ on the nucleonic direct URCA processes. It is found that the inclusion of the tensor couplings of vector mesons w and p can slightly increase the maximum mass of neutron stars. In addition, the results indicate that the tensor couplings of vector mesons ω and ρ lead to obvious enhancement of the total neutrino emissivity for the nucleonic direct URCA processes, which must accelerate the cooling rate of the non- superfluid neutron star matter. However, when considering only the tensor coupling of vector meson ρ, the neutrino emissivity for the nucleonic direct URCA processes slightly declines at low densities and significantly increases at high densities. That is, the tensor coupling of vector meson ρ leads to the slow cooling rate of a low-mass neutron star and rapid cooling rate of a massive neutron star.展开更多
CS2 removal was obtained by coupling catalytic hyidation on bi-functional catalyst. On the hydrolysis active sites, CS2 is hydrolyzed to HES, while on the oxidation active sites, HES is oxidized to elemental S or sulf...CS2 removal was obtained by coupling catalytic hyidation on bi-functional catalyst. On the hydrolysis active sites, CS2 is hydrolyzed to HES, while on the oxidation active sites, HES is oxidized to elemental S or sulfuric acid deposited on the porous support. The above process can be expressed as follows: CS2 H2O→ COS H2O→ H2S O2→ S/SO4^2-. H2S oxidation eliminates its prohibition on C52 hydrolysis so that the rate of coupling removal CS2 is 5 times higher than that of CS2 hydrolysis. The same active energy of hydrolysis and coupling reaction also indicates that HES oxidation does not change the reaction mechanism of CS2 hydrolysis. Temperature has obvious effect on the process while the mole ratio of O2 concentration to CS2 concentration (O/S) does not, especially in excess of 2.5. The formation of sulfuric acid on the catalyst surface poisons hydrolysis active sites and causes the decrease of left OH^-1 concentration on the catalysts surface. Lower temperature is suggested for this bi-functional catalyst owing to the low yield ratio of S/SO4^2-.展开更多
The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal con...The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal concept in drifts in clay formation with backfilled bentonite buffer is represented numerically using the CODE BRIGHT developed by the Technical University of Catalonia in Barcelona.The parameters of clay and bentonite used in the simulation are determined by laboratory and in situ experiments.The calculation results are presented to show the hydro-mechanical(HM) processes during the operation phase and the THM processes in the after-closure phase.According to the simulation results,the most probable critical processes for the disposal project have been represented and analyzed.The work also provides an input for additional development regarding the design,assessment and validation of the HLW disposal concept.展开更多
The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic sheari...The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic shearing and opening of intersecting fractures at discrete fracture scales as a result of coupled processes,and contact alteration along rough fracture surfaces that triggers structural and physical changes of fractures at micro-asperity scale.In this paper,these challenges are tackled by developing a comprehensive modeling approach for coupled processes in fractured geological media based on numerical manifold method(NMM)at multiple scales.Based on their distinct geometric features,fractures are categorized into three different scales:dominant fracture,discrete fracture,and discontinuum asperity scales.Here the scale is relative,that of the fracture relative to that of the research interest or domain.Different geometric representations of fractures at different scales are used,and different governing equations and constitutive relationships are applied.For dominant fractures,a finite thickness zone model is developed to treat a fracture as a porous nonlinear domain.Nonlinear fracture mechanical behavior is accurately modeled with an implicit approach based on strain energy.For discrete fractures,a zero-dimensional model was developed for analyzing fluid flow and mechanics in fractures that are geometrically treated as boundaries of the rock matrix.With the zero-dimensional model,these fractures can be modeled with arbitrary orientations and intersections.They can be fluid conduits or seals,and can be open,bonded or sliding.For the discontinuum asperity scale,the geometry of rough fracture surfaces is explicitly represented and contacts involving dynamic alteration of contacts among asperities are rigorously calculated.Using this approach,fracture alteration caused by deformation,re-arrangement and sliding of rough surfaces can be captured.Our comprehensive model is able to handle the computational challenges with accurate representation of intersections and shearing of fractures at the discrete fracture scale and rigorously treats contacts along rough fracture surfaces at the discontinuum asperity scale.With future development of three-dimensional(3D)geometric representation of discrete fracture networks in porous rock and contacts among multi-body systems,this model is promising as a basis of 3D fully coupled analysis of fractures at multiple scales,for advancing understanding and optimizing energy recovery and storage in fractured geological media.展开更多
Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mech...Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mechanisms associated with various engineering measures for seepage control are investigated from a new perspective within the framework of continuum mechanics;and an equation-based classification of seepage control mechanisms is proposed according to their roles in the mathematical models for seepage flow,including control mechanisms by coupled processes,initial states,boundary conditions and hydraulic properties.The effects of each mechanism on seepage control are illustrated with examples in hydroelectric engineering and radioactive waste disposal,and hence the reasonability of classification is demonstrated.Advice on performance assessment and optimization design of the seepage control systems in geotechnical engineering is provided,and the suggested procedure would serve as a useful guidance for cost-effective control of seepage flow in various engineering practices.展开更多
The dynamic effect is a very important issue widely debated by scholars when studying the genetic and disaster-causing mechanisms of earthquake-triggered landslides.First,the dynamic effect mechanism and phenomena of ...The dynamic effect is a very important issue widely debated by scholars when studying the genetic and disaster-causing mechanisms of earthquake-triggered landslides.First,the dynamic effect mechanism and phenomena of earthquake-triggered landslides were summarized in this paper.Then,the primary types of dynamic effects were further used to interpret the Mogangling landslide in Moxi Town of Luding County,China.A field investigation,remote sensing,numerical calculation and theoretical analysis were carried out to illustrate the failure mechanism of slope rock masses affected by earthquakes.The interaction between seismic waves and slope rock masses and the induced dynamic effect of slope rock masses were primarily accounted for in the analysis.The slope topography,rock mass weathering and unloading characteristics,river erosion,regional seismogenic structure,and rock mass structure characteristics were also discussed.The results showed that the formation of the Mogangling landslide was mainly related to the high amplification effect of seismic acceleration and back slope effects,interface dynamic stress effects,and double-sided slope effects of seismic waves caused by the catastrophic Ms 7.75 Moxi Earthquake in 1786.The principles for the site and route selection of large-scale infrastructure in the planning stage and the scientific prevention of seismic geological disasters were proposed on the basis of the dynamic effect of earthquake-induced landslides.展开更多
The removal of 17β-estradiol (E2) in laccase catalyzed oxidative coupling processes was systematically studied in this work. We focused on the influence of pH and natural organic matter (NOM) on the performance o...The removal of 17β-estradiol (E2) in laccase catalyzed oxidative coupling processes was systematically studied in this work. We focused on the influence of pH and natural organic matter (NOM) on the performance of the enzymatic treatment processes. It was found that the optimal pH for E2 removal was between 4 and 6. The removal of E2 was slightly inhibited in the presence of NOM. Enzymatic transformation of E2 was second-order in kinetics with first-order to both the concentrations of the enzyme and contaminant. Mass spectrum (MS) analysis suggested that coupling products were formed through radical-radical coupling mechanism. The results of this study demonstrated that laccase catalyzed oxidative coupling process could potentially serve as a treatment strategy to control steroid estrogens.展开更多
Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models...Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models serve a dual purpose:they validate theoretical robustness and applicability via observational data and project future trends,thereby bridging the understanding and prediction of natural processes.In rapid advancements in computational methodologies and the continuous evolution of observational and experimental techniques,the development of numerical hydrological models based on physicallybased surface-subsurface process coupling have accelerated.Anchored in micro-scale conservation principles and physical equations,these models employ numerical techniques to integrate surface and subsurface hydrodynamics,thus replicating the macro-scale hydrological responses of watersheds.Numerical hydrological models have emerged as a leading and predominant trend in hydrological modeling due to their explicit representation of physical processes,heightened by their spatiotemporal resolution and reliance on interdisciplinary integration.This article focuses on the theoretical foundation of surface-subsurface numerical hydrological models.It includes a comparative and analytical discussion of leading numerical hydrological models,encompassing model architecture,numerical solution strategies,spatial representation,and coupling algorithms.Additionally,this paper contrasts these models with traditional hydrological models,thereby delineating the relative merits,drawbacks,and future directions of numerical hydrological modeling.展开更多
A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the th...A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the theory of the broadening exponent of critical fluctuations to cover the chemical reaction-heat conduction coupling systems as an asymptotic property of the corresponding Markovian master equation (ME),and establish a valid stochastic thermodynamics for such systems. As an illustration,the non-isothermal and inhomogeneous Schl-gl model is explicitly studied. Through an order analysis of the contributions from both the drift and diffusion to the evolution of the probability distribution in the corresponding Fokker-Planck equation(FPE) in the approach to bifurcation,we have identified the critical transition rule for the broadening exponent of the fluctuations due to the coupling between chemical reaction and heat conduction. It turns out that the dissipation induced by the critical fluctuations reaches a deterministic level,leading to a thermodynamic effect on the nonequilibrium physico-chemical processes.展开更多
High-end crystal manufacture has drawn a permanent concern on the high-efficient manufacture of crystal particles,especially in fine chemical,pharmaceutical,electronics,biological and relative engineering fields.In re...High-end crystal manufacture has drawn a permanent concern on the high-efficient manufacture of crystal particles,especially in fine chemical,pharmaceutical,electronics,biological and relative engineering fields.In recent years,a series of microscale process intensification(MPI)technologies have been widely used in crystal particles preparation via addressing the control of nucleation and growth process.Herein,we review the research progresses of microscale process intensification technology from three aspects,microfluidics devices,microscale force field technology and membrane-based microchannels and interface transfer process.Firstly,the principle of microfluidic and relative microscale device on improving micro-mixing and mass transfer are briefly described.The advantage of microfluidic in continuous nano particle preparation is outlined.Microscale external force field(ultrasonic,high-gravity,electric and magnetic fields)is then introduced as another novel approach for ultrafine nanoparticles and continuous drug crystallization process.Further,in view of the micro-scale intensified mass transfer and microscale interfacial force field established on membrane technology,the basic mechanism of membrane crystallization(microscale 2D supersaturation degree control,auto seed detachment,microporous membrane dispersion,etc.)is reviewed.The process coupling and design strategy aiming for enhancing the manufacture capacity is also illustrated.Finally,the developing tendency and key challenges of high-efficient crystal particle preparation technology via microscale processes are overviewed.展开更多
As a kind of clean renewable energy,the production and utilization of geothermal resources can make a great contribution to optimizing the energy structure and energy conservation and emission reduction.The circulatin...As a kind of clean renewable energy,the production and utilization of geothermal resources can make a great contribution to optimizing the energy structure and energy conservation and emission reduction.The circulating heat extraction process of working fluid will disturb the equilibrium state of physical and chemical fields inside the reservoir,and involve the mutual coupling of heat transfer,flow,stress,and chemical reaction.Revealing the coupling mechanism of flow and heat transfer inside the reservoir during geothermal exploitation can provide important theoretical support for the efficient exploitation of geothermal resources.This paper reviews the research advances of the multi-field coupling model in the reservoir during geothermal production over the past 40 years.The thrust of this paper is on objective analysis and evaluation of the importance of each coupling process and its influence on reservoir heat extraction performance.Finally,we discuss the existing challenges and perspectives to promote the future development of the geothermal reservoir multi-field coupling model.An accurate understanding of the multi-field coupling mechanism,an efficient cross-scale modeling method,as well as the accurate characterization of reservoir fracture morphology,are crucial for the multi-field coupling model of geothermal production.展开更多
The absorption of CO2 in insoluble organic amine is crucial for understanding the mechanism of coupled reaction-extraction-crystallization process between aqueous chloride and CO2. In this study, the solubility and di...The absorption of CO2 in insoluble organic amine is crucial for understanding the mechanism of coupled reaction-extraction-crystallization process between aqueous chloride and CO2. In this study, the solubility and diffusivity of CO2 in n-butanol+ N235 system were measured and reported. The absorption of CO2 in the system is a physical absorption behavior and the solubility of CO2 decreases with the increase of the mass fraction of N235. The diffusivity of CO2 increases firstly and then decreases with the increase in the mass fraction of N235. Moreover, the absorption mechanism of CO2 in the coupled reaction-extraction-crystallization process was investigated and identified by experiments. The results indicated that in the coupled reaction-extraction-crystallization process, CO2 is absorbed by the aqueous phase rather than by the organic phase and further transferred into the aqueous phase.展开更多
An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect bra...An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.展开更多
The coupled equation method (CEM) has been applied to investigating the resonance structures for the ground state 1s^22s^ 2S of the neutral lithium from the first threshold up to 64.5 eV. Resonance structures of ato...The coupled equation method (CEM) has been applied to investigating the resonance structures for the ground state 1s^22s^ 2S of the neutral lithium from the first threshold up to 64.5 eV. Resonance structures of atomic lithium due to single excitations of the ls and 2s electrons are studied by infinite-order calculations in detail. The effect of spin-orbit splitting is also included for some of the low-lying ls2snp(↑↓) resonance, and the influence of the interference between 1s^2s^3 Snp .↓ and 1s2s^ 1 Snp ↑ states on the resonance structure has been confirmed theoretically. The results show that the presented technique can give the reasonable resonance structures very well in photoionization processes.展开更多
Per- and polyfluoroalkyl substances (PFAS) pose serious human health and environmental risks due to their persistence and toxicity. Among the available PFAS remediation options, the electrochemical approach is promisi...Per- and polyfluoroalkyl substances (PFAS) pose serious human health and environmental risks due to their persistence and toxicity. Among the available PFAS remediation options, the electrochemical approach is promising with better control. In this review, recent advances in the decontamination of PFAS from water using several state-of-the-art electrochemical strategies, including electro-oxidation, electro-adsorption, and electro-coagulation, were systematically reviewed. We aimed to elucidate their design principles, underlying working mechanisms, and the effects of operation factors (e.g., solution pH, applied voltage, and reactor configuration). The recent developments of innovative electrochemical systems and novel electrode materials were highlighted. In addition, the development of coupled processes that could overcome the shortcomings of low efficiency and high energy consumption of conventional electrochemical systems was also emphasized. This review identified several major knowledge gaps and challenges in the scalability and adaptability of efficient electrochemical systems for PFAS remediation. Materials science and system design developments are forging a path toward sustainable treatment of PFAS-contaminated water through electrochemical technologies.展开更多
基金supported by the National Science Foundation of China(grant No.41476053)the China Geological Project(grants No.GZH201400214 and DD20160153)
文摘Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution of continental margin, can be used to interpret the geological process of basin-range conversion and reconstruct early prototype basins, which is a difficult and leadin~ scientific oroblem of basin research.
基金Project of Science and Technology Department of Guizhou Province[ZK(2022)016]Special Fund for Outstanding Youth Talents of Science and Technology of Guizhou Province[YQK[2023]014]+1 种基金Special Research Fund of Natural Science(Special Post)of Guizhou University[(2020)01]Key Cultivation Program of Guizhou University[2019(08)].
文摘The widespread organic pollutants in wastewater are one of the global environmental problems.Advanced oxidation processes(AOPs)are widely used because of their characteristics of high efficiency and strong oxidation.However,AOPs may have some defects,such as incomplete mineralization of organic pollutants and the generation of toxic by-products during the degradation process,thus it is essential to seek efficient and green wastewater treatment technologies.Coupling different AOPs or other processes is beneficial for the mineralization of pollutants and reduces ecological risks to the environment.It is worth noting that carbonaceous materials(CMs)have received widespread attention and application in the degradation of organic pollutants in water by advanced oxidation coupling processes(C-AOPs)due to their excellent physicochemical properties in recent years.However,the behaviors and mechanisms of C-AOPs based on CMs on the degradation of organic pollutants are still unknown.Therefore,it is essential to comprehensively summarize the recent research progress.In this review,the applications of different CMs in C-AOPs were reviewed first.Secondly,the synergistic mechanisms of the C-AOPs based on different CMs were discussed.Then,toxic intermediates were explored and important toxicity assessment methods were proposed.Finally,the application potential of the C-AOPs in the future and the challenges were proposed.This review provides an important reference for the application and optimization of the C-AOPs in organic wastewater treatment in the future.
基金[This work was financially supported by a research grant from the Hong Kong Polytechnic University (No.G-V694).]
文摘The thermal-mechanical coupling finite element method(FEM)was usedto simulate a non-isothermal sheet metal extrusion process. On thebasis of the finite plasticity consistent with multiplicativedecomposition of the deformation gradient, the enhanced as- sumedstrain(EAS)FEM was applied to carry out the numerical simulation. Inorder to make the computation reliable ad avoid hour- glass mode inthe EAS element under large compressive strains, an alterative formof the original enhanced deformation gradient was employed. Inaddition, reduced factors were used in the computation of the elementlocal internal parameters and the enhanced part of elementalstiffness.
基金the support from Clariant International Ltd.the National Natural Science Foundation of China (Nos.22022811,21938008,and U21B2096)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic reaction is constrained by thermodynamic equilibrium and involves a complex reaction network, leading to a heightened focus on catalysts and process design. Copper-based catalysts have been extensively studied and exhibit exceptional low-temperature catalytic performance in cyclohexanol dehydrogenation, with some being commercially used in the industry. This paper specifically concentrates on research advancement concerning active species, reaction mechanisms, factors influencing product selectivity, and the deactivation behaviors of copper-based catalysts. Moreover, a brief introduction to the new processes that break thermodynamic equilibrium via reaction coupling and their corresponding catalysts is summarized here as well. These reviews may off er guidance and potential avenues for further investigations into catalysts and processes for cyclohexanol dehydrogenation.
基金supported by the National Natural Science Foundation of China(Grant nos.41941008 and 41876221)the National Key Research and Development Program of China(Grant no.2022YFC2807601).
文摘The West Antarctic Peninsula(WAP)region is one of the most productive marine ecosystems in the Southern Ocean that support the food web for phytoplankton,krill spawning or recruitment and several krill consumers at higher-trophic level like penguins and Antarctic fur seals.Characterized by channels and islands,the complex topography of the WAP generates interconnected circulation patterns,strongly influencing vertical stratification,nutrient availability and distribution of marine organisms.Additionally,rapid climate change associated with major climate modes like the Southern Annular Mode(SAM)and El Niño-Southern Oscillation(ENSO)has significant effects on long-term variations of physical environments and biological production.The objective of this study is to reveal the spatial-temporal variations of phytoplankton biomass in the WAP region and the modulating physical-ecological processes.By using 9-year hydrographic and ecological data of five transects collected by the Palmer Long-Term Ecosystem Research,the horizontal and vertical distributions of several physical and ecological properties,with a particular focus on chlorophyll(Chl)concentration were explored.Regression analysis among area-averaged properties and properties at single stations was performed to reveal the relationship between the interannual variations of physical and ecological processes.The correlation results showed that Chl concentration exhibited a positive relationship with both the circumpolar deep water(CDW)intrusion and vertical stratification,but showed a negative correlation with SAM at some specific stations.However,certain processes or mechanisms may only be dominant for specific stations and not applicable to the entire region.No single physical or ecological factors have been found to significantly influence the Chl distribution throughout the WAP region,which may be attributed to the heterogeneity of sea ice conditions,geometry and hydrodynamic features as well as variations in nutrient sources.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11447165,11373047 and 11265009the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2016056
文摘The relativistic neutrino emissivity of the nucleonic direct URCA processes in neutron star matter is investigated within the relativistic Hartree-Fock approximation. We particularly study the influences of the tensor couplings of vector mesons ω and ρ on the nucleonic direct URCA processes. It is found that the inclusion of the tensor couplings of vector mesons w and p can slightly increase the maximum mass of neutron stars. In addition, the results indicate that the tensor couplings of vector mesons ω and ρ lead to obvious enhancement of the total neutrino emissivity for the nucleonic direct URCA processes, which must accelerate the cooling rate of the non- superfluid neutron star matter. However, when considering only the tensor coupling of vector meson ρ, the neutrino emissivity for the nucleonic direct URCA processes slightly declines at low densities and significantly increases at high densities. That is, the tensor coupling of vector meson ρ leads to the slow cooling rate of a low-mass neutron star and rapid cooling rate of a massive neutron star.
文摘CS2 removal was obtained by coupling catalytic hyidation on bi-functional catalyst. On the hydrolysis active sites, CS2 is hydrolyzed to HES, while on the oxidation active sites, HES is oxidized to elemental S or sulfuric acid deposited on the porous support. The above process can be expressed as follows: CS2 H2O→ COS H2O→ H2S O2→ S/SO4^2-. H2S oxidation eliminates its prohibition on C52 hydrolysis so that the rate of coupling removal CS2 is 5 times higher than that of CS2 hydrolysis. The same active energy of hydrolysis and coupling reaction also indicates that HES oxidation does not change the reaction mechanism of CS2 hydrolysis. Temperature has obvious effect on the process while the mole ratio of O2 concentration to CS2 concentration (O/S) does not, especially in excess of 2.5. The formation of sulfuric acid on the catalyst surface poisons hydrolysis active sites and causes the decrease of left OH^-1 concentration on the catalysts surface. Lower temperature is suggested for this bi-functional catalyst owing to the low yield ratio of S/SO4^2-.
基金financed and supported by the German research institute "Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) mbH"
文摘The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal concept in drifts in clay formation with backfilled bentonite buffer is represented numerically using the CODE BRIGHT developed by the Technical University of Catalonia in Barcelona.The parameters of clay and bentonite used in the simulation are determined by laboratory and in situ experiments.The calculation results are presented to show the hydro-mechanical(HM) processes during the operation phase and the THM processes in the after-closure phase.According to the simulation results,the most probable critical processes for the disposal project have been represented and analyzed.The work also provides an input for additional development regarding the design,assessment and validation of the HLW disposal concept.
基金supported by Laboratory Directed Research and Development(LDRD)funding from Berkeley Labsupported by Open Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017004)。
文摘The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic shearing and opening of intersecting fractures at discrete fracture scales as a result of coupled processes,and contact alteration along rough fracture surfaces that triggers structural and physical changes of fractures at micro-asperity scale.In this paper,these challenges are tackled by developing a comprehensive modeling approach for coupled processes in fractured geological media based on numerical manifold method(NMM)at multiple scales.Based on their distinct geometric features,fractures are categorized into three different scales:dominant fracture,discrete fracture,and discontinuum asperity scales.Here the scale is relative,that of the fracture relative to that of the research interest or domain.Different geometric representations of fractures at different scales are used,and different governing equations and constitutive relationships are applied.For dominant fractures,a finite thickness zone model is developed to treat a fracture as a porous nonlinear domain.Nonlinear fracture mechanical behavior is accurately modeled with an implicit approach based on strain energy.For discrete fractures,a zero-dimensional model was developed for analyzing fluid flow and mechanics in fractures that are geometrically treated as boundaries of the rock matrix.With the zero-dimensional model,these fractures can be modeled with arbitrary orientations and intersections.They can be fluid conduits or seals,and can be open,bonded or sliding.For the discontinuum asperity scale,the geometry of rough fracture surfaces is explicitly represented and contacts involving dynamic alteration of contacts among asperities are rigorously calculated.Using this approach,fracture alteration caused by deformation,re-arrangement and sliding of rough surfaces can be captured.Our comprehensive model is able to handle the computational challenges with accurate representation of intersections and shearing of fractures at the discrete fracture scale and rigorously treats contacts along rough fracture surfaces at the discontinuum asperity scale.With future development of three-dimensional(3D)geometric representation of discrete fracture networks in porous rock and contacts among multi-body systems,this model is promising as a basis of 3D fully coupled analysis of fractures at multiple scales,for advancing understanding and optimizing energy recovery and storage in fractured geological media.
基金Supported by the National Natural Science Foundation of China(51079107,50839004)the Program for New Century Excellent Talents in University(NCET-09-0610)
文摘Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mechanisms associated with various engineering measures for seepage control are investigated from a new perspective within the framework of continuum mechanics;and an equation-based classification of seepage control mechanisms is proposed according to their roles in the mathematical models for seepage flow,including control mechanisms by coupled processes,initial states,boundary conditions and hydraulic properties.The effects of each mechanism on seepage control are illustrated with examples in hydroelectric engineering and radioactive waste disposal,and hence the reasonability of classification is demonstrated.Advice on performance assessment and optimization design of the seepage control systems in geotechnical engineering is provided,and the suggested procedure would serve as a useful guidance for cost-effective control of seepage flow in various engineering practices.
基金supported by the China Geological Survey Projects(Nos.20160272,20211379)the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0904)。
文摘The dynamic effect is a very important issue widely debated by scholars when studying the genetic and disaster-causing mechanisms of earthquake-triggered landslides.First,the dynamic effect mechanism and phenomena of earthquake-triggered landslides were summarized in this paper.Then,the primary types of dynamic effects were further used to interpret the Mogangling landslide in Moxi Town of Luding County,China.A field investigation,remote sensing,numerical calculation and theoretical analysis were carried out to illustrate the failure mechanism of slope rock masses affected by earthquakes.The interaction between seismic waves and slope rock masses and the induced dynamic effect of slope rock masses were primarily accounted for in the analysis.The slope topography,rock mass weathering and unloading characteristics,river erosion,regional seismogenic structure,and rock mass structure characteristics were also discussed.The results showed that the formation of the Mogangling landslide was mainly related to the high amplification effect of seismic acceleration and back slope effects,interface dynamic stress effects,and double-sided slope effects of seismic waves caused by the catastrophic Ms 7.75 Moxi Earthquake in 1786.The principles for the site and route selection of large-scale infrastructure in the planning stage and the scientific prevention of seismic geological disasters were proposed on the basis of the dynamic effect of earthquake-induced landslides.
基金This research was funded by the National Natural Science Foundation of China (Grant No. 51178224), Jiangsu Natural Science Foundation (BIC2010443), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institute. The content of the paper does not necessarily represent the views of the funding agencies.
文摘The removal of 17β-estradiol (E2) in laccase catalyzed oxidative coupling processes was systematically studied in this work. We focused on the influence of pH and natural organic matter (NOM) on the performance of the enzymatic treatment processes. It was found that the optimal pH for E2 removal was between 4 and 6. The removal of E2 was slightly inhibited in the presence of NOM. Enzymatic transformation of E2 was second-order in kinetics with first-order to both the concentrations of the enzyme and contaminant. Mass spectrum (MS) analysis suggested that coupling products were formed through radical-radical coupling mechanism. The results of this study demonstrated that laccase catalyzed oxidative coupling process could potentially serve as a treatment strategy to control steroid estrogens.
基金supported by the National Natural Science Foundation of China(Grant Nos.41930759,42325502)the West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202215)+2 种基金the Chinese Academy Sciences Talents Program,National Cryosphere Desert Data Centerthe Qinghai Key Laboratory of Disaster Prevention(Grant No.QFZ-2021-Z02)2023 First Batch of Science and Technology Plan Projects of Lanzhou City(Grant No.2023-1-49)。
文摘Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models serve a dual purpose:they validate theoretical robustness and applicability via observational data and project future trends,thereby bridging the understanding and prediction of natural processes.In rapid advancements in computational methodologies and the continuous evolution of observational and experimental techniques,the development of numerical hydrological models based on physicallybased surface-subsurface process coupling have accelerated.Anchored in micro-scale conservation principles and physical equations,these models employ numerical techniques to integrate surface and subsurface hydrodynamics,thus replicating the macro-scale hydrological responses of watersheds.Numerical hydrological models have emerged as a leading and predominant trend in hydrological modeling due to their explicit representation of physical processes,heightened by their spatiotemporal resolution and reliance on interdisciplinary integration.This article focuses on the theoretical foundation of surface-subsurface numerical hydrological models.It includes a comparative and analytical discussion of leading numerical hydrological models,encompassing model architecture,numerical solution strategies,spatial representation,and coupling algorithms.Additionally,this paper contrasts these models with traditional hydrological models,thereby delineating the relative merits,drawbacks,and future directions of numerical hydrological modeling.
基金supported by the National Natural Science Foundation of China (20673074 & 20973119)
文摘A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the theory of the broadening exponent of critical fluctuations to cover the chemical reaction-heat conduction coupling systems as an asymptotic property of the corresponding Markovian master equation (ME),and establish a valid stochastic thermodynamics for such systems. As an illustration,the non-isothermal and inhomogeneous Schl-gl model is explicitly studied. Through an order analysis of the contributions from both the drift and diffusion to the evolution of the probability distribution in the corresponding Fokker-Planck equation(FPE) in the approach to bifurcation,we have identified the critical transition rule for the broadening exponent of the fluctuations due to the coupling between chemical reaction and heat conduction. It turns out that the dissipation induced by the critical fluctuations reaches a deterministic level,leading to a thermodynamic effect on the nonequilibrium physico-chemical processes.
基金We acknowledge the financial contribution from Science Fund for Creative Research Groups of the National Natural Science Foundation of China(22021005)National Natural Science Foundation of China(Grant No.21978037)+3 种基金Fundamental Research Funds for the Central Universities(DUT19TD33)National Key Research and Development Program of China(Grant No.2019YFE0119200)Support Plan of Innovative Talents of Liaoning Province(XLYC1901005,XLYC1907149)Dalian Innovative Science and Technology Fund(2020JJ26SN064).
文摘High-end crystal manufacture has drawn a permanent concern on the high-efficient manufacture of crystal particles,especially in fine chemical,pharmaceutical,electronics,biological and relative engineering fields.In recent years,a series of microscale process intensification(MPI)technologies have been widely used in crystal particles preparation via addressing the control of nucleation and growth process.Herein,we review the research progresses of microscale process intensification technology from three aspects,microfluidics devices,microscale force field technology and membrane-based microchannels and interface transfer process.Firstly,the principle of microfluidic and relative microscale device on improving micro-mixing and mass transfer are briefly described.The advantage of microfluidic in continuous nano particle preparation is outlined.Microscale external force field(ultrasonic,high-gravity,electric and magnetic fields)is then introduced as another novel approach for ultrafine nanoparticles and continuous drug crystallization process.Further,in view of the micro-scale intensified mass transfer and microscale interfacial force field established on membrane technology,the basic mechanism of membrane crystallization(microscale 2D supersaturation degree control,auto seed detachment,microporous membrane dispersion,etc.)is reviewed.The process coupling and design strategy aiming for enhancing the manufacture capacity is also illustrated.Finally,the developing tendency and key challenges of high-efficient crystal particle preparation technology via microscale processes are overviewed.
基金the National Natural Science Fund for Major Program of China(Grant No.52192621)the National Natural Science Fund for Major Program of China(Grant No.52192624)+1 种基金the National Key Research and Development Program of China(Grant No.2018YFB1501804)Sichuan Science and Technology Program(2021YJ0389).
文摘As a kind of clean renewable energy,the production and utilization of geothermal resources can make a great contribution to optimizing the energy structure and energy conservation and emission reduction.The circulating heat extraction process of working fluid will disturb the equilibrium state of physical and chemical fields inside the reservoir,and involve the mutual coupling of heat transfer,flow,stress,and chemical reaction.Revealing the coupling mechanism of flow and heat transfer inside the reservoir during geothermal exploitation can provide important theoretical support for the efficient exploitation of geothermal resources.This paper reviews the research advances of the multi-field coupling model in the reservoir during geothermal production over the past 40 years.The thrust of this paper is on objective analysis and evaluation of the importance of each coupling process and its influence on reservoir heat extraction performance.Finally,we discuss the existing challenges and perspectives to promote the future development of the geothermal reservoir multi-field coupling model.An accurate understanding of the multi-field coupling mechanism,an efficient cross-scale modeling method,as well as the accurate characterization of reservoir fracture morphology,are crucial for the multi-field coupling model of geothermal production.
文摘The absorption of CO2 in insoluble organic amine is crucial for understanding the mechanism of coupled reaction-extraction-crystallization process between aqueous chloride and CO2. In this study, the solubility and diffusivity of CO2 in n-butanol+ N235 system were measured and reported. The absorption of CO2 in the system is a physical absorption behavior and the solubility of CO2 decreases with the increase of the mass fraction of N235. The diffusivity of CO2 increases firstly and then decreases with the increase in the mass fraction of N235. Moreover, the absorption mechanism of CO2 in the coupled reaction-extraction-crystallization process was investigated and identified by experiments. The results indicated that in the coupled reaction-extraction-crystallization process, CO2 is absorbed by the aqueous phase rather than by the organic phase and further transferred into the aqueous phase.
基金Project supported by the National Natural Science Foundation of China(No.61674036)
文摘An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.
基金This work was supported by the Natural Science Foundation of Yantai Normal University under Grant No.22270301 and L20072804.
文摘The coupled equation method (CEM) has been applied to investigating the resonance structures for the ground state 1s^22s^ 2S of the neutral lithium from the first threshold up to 64.5 eV. Resonance structures of atomic lithium due to single excitations of the ls and 2s electrons are studied by infinite-order calculations in detail. The effect of spin-orbit splitting is also included for some of the low-lying ls2snp(↑↓) resonance, and the influence of the interference between 1s^2s^3 Snp .↓ and 1s2s^ 1 Snp ↑ states on the resonance structure has been confirmed theoretically. The results show that the presented technique can give the reasonable resonance structures very well in photoionization processes.
基金supported by the National Natural Science Foundation of China(No.52170068 and U21A20161)the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.QAK202108).
文摘Per- and polyfluoroalkyl substances (PFAS) pose serious human health and environmental risks due to their persistence and toxicity. Among the available PFAS remediation options, the electrochemical approach is promising with better control. In this review, recent advances in the decontamination of PFAS from water using several state-of-the-art electrochemical strategies, including electro-oxidation, electro-adsorption, and electro-coagulation, were systematically reviewed. We aimed to elucidate their design principles, underlying working mechanisms, and the effects of operation factors (e.g., solution pH, applied voltage, and reactor configuration). The recent developments of innovative electrochemical systems and novel electrode materials were highlighted. In addition, the development of coupled processes that could overcome the shortcomings of low efficiency and high energy consumption of conventional electrochemical systems was also emphasized. This review identified several major knowledge gaps and challenges in the scalability and adaptability of efficient electrochemical systems for PFAS remediation. Materials science and system design developments are forging a path toward sustainable treatment of PFAS-contaminated water through electrochemical technologies.