期刊文献+
共找到532篇文章
< 1 2 27 >
每页显示 20 50 100
Data-Based Filters for Non-Gaussian Dynamic Systems With Unknown Output Noise Covariance
1
作者 Elham Javanfar Mehdi Rahmani 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期866-877,共12页
This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown cova... This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system.Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering,we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points,reduces distant point influence,and lowers computational cost.Then,by introducing the weighted maximum likelihood,we propose a semi-definite program(SDP)to detect outliers and reduce their impacts on each cluster.Detecting these weights paves the way to obtain an appropriate covariance of the output noise.Next,two filtering approaches are presented:a cluster-based robust linear filter using the maximum a posterior(MAP)estimation and a clusterbased robust nonlinear filter assuming that output noise distribution stems from some Gaussian noise resources according to the ellipsoidal clusters.At last,simulation results demonstrate the effectiveness of our proposed filtering approaches. 展开更多
关键词 Data-based filter maximum likelihood estimation unknown covariance weighted maximum likelihood estimation weighted sum-of-norms clustering
下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
2
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
下载PDF
Low-Complexity Reconstruction of Covariance Matrix in Hybrid Uniform Circular Array
3
作者 Fu Zihao Liu Yinsheng Duan Hongtao 《China Communications》 SCIE CSCD 2024年第3期66-74,共9页
Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital struc... Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach. 展开更多
关键词 hybrid array MILLIMETER-WAVE spatial covariance matrix uniform circular array
下载PDF
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
4
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 High-Dimensional covariance Matrix Missing Data Sub-Gaussian Noise Optimal Estimation
下载PDF
Empirical Likelihood Statistical Inference for Compound Poisson Vector Processes under Infinite Covariance Matrix
5
作者 程从华 《Journal of Donghua University(English Edition)》 CAS 2023年第1期122-126,共5页
The paper discusses the statistical inference problem of the compound Poisson vector process(CPVP)in the domain of attraction of normal law but with infinite covariance matrix.The empirical likelihood(EL)method to con... The paper discusses the statistical inference problem of the compound Poisson vector process(CPVP)in the domain of attraction of normal law but with infinite covariance matrix.The empirical likelihood(EL)method to construct confidence regions for the mean vector has been proposed.It is a generalization from the finite second-order moments to the infinite second-order moments in the domain of attraction of normal law.The log-empirical likelihood ratio statistic for the average number of the CPVP converges to F distribution in distribution when the population is in the domain of attraction of normal law but has infinite covariance matrix.Some simulation results are proposed to illustrate the method of the paper. 展开更多
关键词 compound Poisson vector process(CPVP) infinite covariance matrix domain of attraction of normal law empirical likelihood(EL)
下载PDF
Evaluation of Multiplicative Weight of Covariance Matrix on Hybrid Data Assimilation Schemes
6
作者 Pedro M. González-Jardines Maibys Sierra-Lorenzo Adrián L. Ferrer-Hernández 《Atmospheric and Climate Sciences》 CAS 2023年第2期255-281,共27页
This research develops a comparative study between different multiplicative weights that are assigned to the covariance matrix that represents the background error in two hybrid assimilation schemes: 3DEnVAR and 4DEnV... This research develops a comparative study between different multiplicative weights that are assigned to the covariance matrix that represents the background error in two hybrid assimilation schemes: 3DEnVAR and 4DEnVAR. These weights are distributed between the static and time-invariant matrix and the matrix generated from the perturbations of a previous ensemble. The assigned values are 25%, 50%, and 75%, always having as a reference the ensemble matrix. The experiments are applied to the short-range Prediction System (SisPI) that works operationally at the Institute of Meteorology. The impact of Tropical Storm Eta on November 7 and 8, 2020 was selected as a study case. The results suggest that by giving the main weight to the ensemble matrix more realistic solutions are achieved because it shows a better representation of the synoptic flow. On the other hand, it is observed that 3DEnVAR method is more sensitive to multiplicative weight change of the first guess. More realistic results are obtained with 50% and 75% relations with 4DEnVAR method, whereas with 3DEnVAR a weight of 75% for the ensemble matrix is required. 展开更多
关键词 SisPI WRFDA Hybrid-Methods covariance Weights
下载PDF
Reservoir history matching and inversion using an iterative ensemble Kalman filter with covariance localization 被引量:5
7
作者 Wang Yudou Li Maohui 《Petroleum Science》 SCIE CAS CSCD 2011年第3期316-327,共12页
Reservoir inversion by production history matching is an important way to decrease the uncertainty of the reservoir description. Ensemble Kalman filter (EnKF) is a new data assimilation method. There are two problem... Reservoir inversion by production history matching is an important way to decrease the uncertainty of the reservoir description. Ensemble Kalman filter (EnKF) is a new data assimilation method. There are two problems have to be solved for the standard EnKF. One is the inconsistency between the updated model and the updated dynamical variables for nonlinear problems, another is the filter divergence caused by the small ensemble size. We improved the EnKF to overcome these two problems. We use the half iterative EnKF (HIEnKF) for reservoir inversion by doing history matching. During the H1EnKF process, the prediction data are obtained by rerunning the reservoir simulator using the updated model. This can guarantee that the updated dynamical variables are consistent with the updated model. The updated model can nonlinearly affect the prediction data. It is proved that HIEnKF is similar to the first iteration of the EnRML method. Covariance localization is introduced to alleviate filter divergence and spurious correlations caused by the small ensemble size. By defining the shape and size of the correlation area, spurious correlation between the gridblocks far apart is alleviated. More freedom of the model ensemble is preserved. The results of history matching and inverse problem obtained from the HIEnKF with covariance localization are improved. The results show that the model freedom increases with a decrease in the correlation length. Therefore the production data can be matched better. But too small a correlation length can lose some reservoir information and this would cause big errors in the reservoir model estimation. 展开更多
关键词 Half iterative ensemble Kalman filter covariance localization reservoir inversion historymatching fluvial channel reservoir
下载PDF
Sensor management of LEO constellation based on covariance control 被引量:4
8
作者 QIN Zheng LIANG Yan'gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期393-401,共9页
This paper studies the multi-sensor management problem for low earth orbit(LEO) infrared warning constellation used to track a midcourse missile. A covariance control approach, which selects sensor combinations or sub... This paper studies the multi-sensor management problem for low earth orbit(LEO) infrared warning constellation used to track a midcourse missile. A covariance control approach, which selects sensor combinations or subset based on the difference between the desired covariance matrix and the actual covariance of each target, is used for sensor management, including some matrix metrics to measure the differentia between two covariance matrices. Besides, to meet the requirements of the space based warning system, the original covariance control approach is improved. Simulation results demonstrate that the covariance control approach is able to provide a better tracking performance by providing a well-designed desired covariance and balance tracking performance goals with system demands. 展开更多
关键词 sensor management covariance control TARGET TRACKING ACCURACY LEO CONSTELLATION
下载PDF
VARIATIONAL DATA ASSIMILATION USING WAVELET BACKGROUND ERROR COVARIANCE: INITIALIZATION OF TYPHOON KAEMI (2006) 被引量:6
9
作者 张卫民 曹小群 +3 位作者 肖庆农 宋君强 朱小谦 王舒畅 《Journal of Tropical Meteorology》 SCIE 2010年第4期333-340,共8页
Background error covariance plays an important role in any variational data assimilation system, because it determines how information from observations is spread in model space and between different model variables. ... Background error covariance plays an important role in any variational data assimilation system, because it determines how information from observations is spread in model space and between different model variables. In this paper, the use of orthogonal wavelets in representation of background error covariance over a limited area is studied. Based on the WRF model and its 3D-VAR system, an algorithm using orthogonal wavelets to model background error covariance is developed. Because each wavelet function contains information on both position and scale, using a diagonal correlation matrix in wavelet space gives the possibility to represent some anisotropic and inhomogeneous characteristics of background error covariance. The experiments show that local correlation functions are better modeled than spectral methods. The formulation of wavelet background error covariance is tested with the typhoon Kaemi (2006). The results of experiments indicate that the subsequent forecasts of typhoon Kaemi’s track and intensity are significantly improved by the new method. 展开更多
关键词 variational data assimilation background error covariance orthogonal wavelet TYPHOON
下载PDF
Eddy Covariance Tilt Corrections over a Coastal Mountain Area in South-east China:Significance for Near-Surface Turbulence Characteristics 被引量:4
10
作者 刘丽 王体健 +4 位作者 孙振海 王勤耕 庄炳亮 韩永 李树 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第6期1264-1278,共15页
Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR... Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR), triple rotation (TR), and classic planar-fit rotation (PF) were examined in terms of correction of eddy covariance flux. Using the commonly used DR and TR methods, unreasonable rotation angles are encountered at low wind speeds and cause significant run-to-run errors of some turbulence characteristics. The PF method rotates the coordinate system to an ensemble-averaged plane, and shows large tilt error due to an inaccurate fit plane over variable terrain slopes. In this paper, we propose another coordinate rotation scheme. The observational data were separated into two groups according to wind direction. The PF method was adapted to find an ensemble-averaged streamline plane for each group of hourly runs with wind speed exceeding 1.0 m s-1. Then, the coordinate systems were rotated to their respective best- fit planes for all available hourly observations. We call this the PF10 method. The implications of tilt corrections for the turbulence characteristics are discussed with a focus on integral turbulence characteristics, the spectra of wind-velocity components, and sensible heat and momentum fluxes under various atmospheric stabilities. Our results show that the adapted application of PF provides greatly improved estimates of integral turbulence characteristics in complex terrain and maintains data quality. The comparisons of the sensible heat fluxes for four coordinate rotation methods to fluxes before correction indicate that the PF10 scheme is the best to preserve consistency between fluxes. 展开更多
关键词 complex terrain atmospheric surface layer eddy covariance method tilt correction turbulence characteristics flux-variance similarity
下载PDF
ON THE OPTIMAL BACKGROUND ERROR COVARIANCES: DIFFERENT SCALE ERRORS' CONTRIBUTION 被引量:4
11
作者 张旭斌 谈哲敏 《Journal of Tropical Meteorology》 SCIE 2013年第4期305-321,共17页
The large-scale and small-scale errors could affect background error covariances for a regional numerical model with the specified grid resolution.Based on the different background error covariances influenced by diff... The large-scale and small-scale errors could affect background error covariances for a regional numerical model with the specified grid resolution.Based on the different background error covariances influenced by different scale errors,this study tries to construct a so-called"optimal background error covariances"to consider the interactions among different scale errors.For this purpose,a linear combination of the forecast differences influenced by information of errors at different scales is used to construct the new forecast differences for estimating optimal background error covariances.By adjusting the relative weight of the forecast differences influenced by information of smaller-scale errors,the relative influence of different scale errors on optimal background error covariances can be changed.For a heavy rainfall case,the corresponding optimal background error covariances can be estimated through choosing proper weighting factor for forecast differences influenced by information of smaller-scale errors.The data assimilation and forecast with these optimal covariances show that,the corresponding analyses and forecasts can lead to superior quality,compared with those using covariances that just introduce influences of larger-or smallerscale errors.Due to the interactions among different scale errors included in optimal background error covariances,relevant analysis increments can properly describe weather systems(processes)at different scales,such as dynamic lifting,thermodynamic instability and advection of moisture at large scale,high-level and low-level jet at synoptic scale,and convective systems at mesoscale and small scale,as well as their interactions.As a result,the corresponding forecasts can be improved. 展开更多
关键词 BACKGROUND error covariances information of ERRORS at DIFFERENT scales MULTI-SCALE INTERACTIONS
下载PDF
Eddy covariance measurements of water vapor and energy flux over a lake in the Badain Jaran Desert,China 被引量:3
12
作者 SUN Jie HU Wenfeng +4 位作者 WANG Nai'ang ZHAO Liqiang AN Ran NING Kai ZHANG Xunhe 《Journal of Arid Land》 SCIE CSCD 2018年第4期517-533,共17页
Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measuremen... Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measurements of energy flux and water vapor were performed over a lake in the Badain Jaran Desert, China from March 2012 to March 2013. The studied lake had about a 2-month frozen period (December and January) and a 10-month open-water period (February-November). Latent heat flux (LE) and sensible heat flux (Hs) acquired using the eddy covariance technique were argued by measurements of long'wave and shortwave radiation. Both fluxes of longwave and shortwave radiation showed seasonal dynamics and daily fluctuations during the study period. The reflected solar radiation was much higher in winter than in other seasons. LE exhibited diurnal and seasonal variations. On a daily scale, LE was low in the morning and peaked in the afternoon. From spring (April) to winter (January), the diurnal amplitude of LE decreased slowly. LE was the dominant heat flux throughout the year and consumed most of the energy from the lake. Generally speaking, LE was mostly affected by changes in the ambient wind speed, while Hs was primarily affected by the product of water-air temperature difference and wind speed. The diurnal LE and Hs were negatively correlated in the open-water period. The variations in Hs and LE over the lake were differed from those on the nearby land surface. The mean evaporation rate on the lake was about 4.0 mm/d over the entire year, and the cumulative annual evaporation rate was 1445 mm/a. The cumulative annual evaporation was 10 times larger than the cumulative annual precipitation. Furthermore, the average evaporation rates over the frozen period and open-water period were approximately 0.6 and 5.0 mm/d, respectively. These results can be used to analyze the water balance and quantify the source of lake water in the Badain Jaran Desert. 展开更多
关键词 eddy covariance energy flux RADIATION EVAPORATION PRECIPITATION LAKE Badain Jaran Desert
下载PDF
Ocean Data Assimilation with Background Error Covariance Derived from OGCM Outputs 被引量:3
13
作者 符伟伟 周广庆 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第2期181-192,共12页
The background error covariance plays an important role in modern data assimilation and analysis systems by determining the spatial spreading of information in the data. A novel method based on model output is propose... The background error covariance plays an important role in modern data assimilation and analysis systems by determining the spatial spreading of information in the data. A novel method based on model output is proposed to estimate background error covariance for use in Optimum Interpolation. At every model level, anisotropic correlation scales are obtained that give a more detailed description of the spatial correlation structure. Furthermore, the impact of the background field itself is included in the background error covariance. The methodology of the estimation is presented and the structure of the covariance is examined. The results of 20-year assimilation experiments are compared with observations from TOGA-TAO (The Tropical Ocean-Global Atmosphere-Tropical Atmosphere Ocean) array and other analysis data. 展开更多
关键词 data assimilation background error model output covariance
下载PDF
Geomagnetic jerk extraction based on the covariance matrix 被引量:3
14
作者 Feng Yan Jiang Yun-Shan +3 位作者 Gu Jia-Lin Xu Fan Jiang Yi Liu Shuang 《Applied Geophysics》 SCIE CSCD 2019年第2期153-159,252,共8页
We normalize data from 43 Chinese observatories and select data from ten Chinese observatories with most continuous records to assess the secular variations(SVs)and geomagnetic jerks by calculating the deviations betw... We normalize data from 43 Chinese observatories and select data from ten Chinese observatories with most continuous records to assess the secular variations(SVs)and geomagnetic jerks by calculating the deviations between annual observed and CHAOS-6 model monthly means.The variations in the north,east,and vertical eigendirections are studied by using the covariance matrix of the residuals,and we find that the vertical direction is strongly affected by magnetospheric ring currents.To obtain noise-free data,we rely on the covariance matrix of the residuals to remove the noise contributions from the largest eigenvalue or vectors owing to ring currents.Finally,we compare the data from the ten Chinese observatories to seven European observatories.Clearly,the covariance matrix method can simulate the SVs of Dst,the jerk of the northward component in 2014 and that of the eastward component in 2003.5 in China are highly agree with that of Vertically downward component in Europe,compare to CHAOS-6,covariance matrix method can show more details of SVs. 展开更多
关键词 Geomagnetic field secular variation covariance matrix JERK CHAOS-6
下载PDF
A background error covariance model of significant wave height employing Monte Carlo simulation 被引量:3
15
作者 郭衍游 侯一筠 +1 位作者 张春美 杨杰 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第5期814-821,共8页
The quality of background error statistics is one of the key components for successful assimilation of observations in a numerical model.The background error covariance(BEC) of ocean waves is generally estimated under... The quality of background error statistics is one of the key components for successful assimilation of observations in a numerical model.The background error covariance(BEC) of ocean waves is generally estimated under an assumption that it is stationary over a period of time and uniform over a domain.However,error statistics are in fact functions of the physical processes governing the meteorological situation and vary with the wave condition.In this paper,we simulated the BEC of the significant wave height(SWH) employing Monte Carlo methods.An interesting result is that the BEC varies consistently with the mean wave direction(MWD).In the model domain,the BEC of the SWH decreases significantly when the MWD changes abruptly.A new BEC model of the SWH based on the correlation between the BEC and MWD was then developed.A case study of regional data assimilation was performed,where the SWH observations of buoy 22001 were used to assess the SWH hindcast.The results show that the new BEC model benefits wave prediction and allows reasonable approximations of anisotropy and inhomogeneous errors. 展开更多
关键词 background error covariance data assimilation Monte Carlo method ocean wave
下载PDF
Using Analysis State to Construct a Forecast Error Covariance Matrix in Ensemble Kalman Filter Assimilation 被引量:3
16
作者 郑小谷 吴国灿 +3 位作者 张树鹏 梁晓 戴永久 李勇 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第5期1303-1312,共10页
Correctly estimating the forecast error covariance matrix is a key step in any data assimilation scheme. If it is not correctly estimated, the assimilated states could be far from the true states. A popular method to ... Correctly estimating the forecast error covariance matrix is a key step in any data assimilation scheme. If it is not correctly estimated, the assimilated states could be far from the true states. A popular method to address this problem is error covariance matrix inflation. That is, to multiply the forecast error covariance matrix by an appropriate factor. In this paper, analysis states are used to construct the forecast error covariance matrix and an adaptive estimation procedure associated with the error covariance matrix inflation technique is developed. The proposed assimilation scheme was tested on the Lorenz-96 model and 2D Shallow Water Equation model, both of which are associated with spatially correlated observational systems. The experiments showed that by introducing the proposed structure of the forecast error eovariance matrix and applying its adaptive estimation procedure, the assimilation results were further improved. 展开更多
关键词 data assimilation ensemble Kalman filter error covariance inflation adaptive estimation maximum likelihood estimation
下载PDF
Representations of Inverse Covariances by Differential Operators 被引量:3
17
作者 Qin XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第2期181-198,共18页
In the cost function of three- or four-dimensional variational dataassimilation, each term is weighted by the inverse of its associated error covariance matrix and thebackground error covariance matrix is usually much... In the cost function of three- or four-dimensional variational dataassimilation, each term is weighted by the inverse of its associated error covariance matrix and thebackground error covariance matrix is usually much larger than the other covariance matrices.Although the background error covariances are traditionally normalized and parameterized by simplesmooth homogeneous correlation functions, the covariance matrices constructed from these correlationfunctions are often too large to be inverted or even manipulated. It is thus desirable to finddirect representations of the inverses of background error correlations. This problem is studied inthis paper. In particular, it is shown that the background term can be written into ∫ dx∣Dυ(x)∣~2, that is, a squared 1/2 norm of a vector differential operator D, called theD-operator, applied to the field of analysis increment υ(x). For autoregressive correlationfunctions, the D-operators are of finite orders. For Gaussian correlation functions, the D-operatorsare of infinite order. For practical applications, the Gaussian D-operators must be truncated tofinite orders. The truncation errors are found to be small even when the Gaussian D-operators aretruncated to low orders. With a truncated D-operator, the background term can be easily constructedwith neither inversion nor direct calculation of the covariance matrix. D-operators are also derivedfor non-Gaussian correlations and transformed into non-isotropic forms. 展开更多
关键词 differential operator inverse background covariance data assimilation
下载PDF
Fast and accurate covariance matrix reconstruction for adaptive beamforming using Gauss-Legendre quadrature 被引量:4
18
作者 LIU Shuai ZHANG Xue +2 位作者 YAN Fenggang WANG Jun JIN Ming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期38-43,共6页
Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the high... Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the highest algebraic precision in the interpolation-type quadrature is proposed to reduce the complexity.The interference angular sector in RAB is regarded as the GLQ integral range,and the zeros of the threeorder Legendre orthogonal polynomial is selected as the GLQ nodes.Consequently,the CMR can be efficiently obtained by simple summation with respect to the three GLQ nodes without integral.The new method has significantly reduced the complexity as compared to most state-of-the-art reconstruction-based RAB techniques,and it is able to provide the similar performance close to the optimal.These advantages are verified by numerical simulations. 展开更多
关键词 robust adaptive beamforming(RAB) covariance matrix reconstruction(CMR) Gauss-Legendre quadrature(GLQ) complexity reduction
下载PDF
Underdetermined DOA estimation via multiple time-delay covariance matrices and deep residual network 被引量:3
19
作者 CHEN Ying WANG Xiang HUANG Zhitao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1354-1363,共10页
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ... Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases. 展开更多
关键词 direction-of-arrival(DOA)estimation underdetermined condition deep residual network(DRN) time delay covariance matrix
下载PDF
ASSESSMENT OF LOCAL INFLUENCE IN A GROWTH CURVE MODEL WITH RAO'S SIMPLE COVARIANCE STRUCTURE 被引量:2
20
作者 白鹏 《Acta Mathematica Scientia》 SCIE CSCD 1999年第S1期555-563,共9页
The present paper deals with the problem of assessing the local influence in a growth curve model with Rao's simple covariance structure. Based on the likelihood displacement,the curvature measure is employed to e... The present paper deals with the problem of assessing the local influence in a growth curve model with Rao's simple covariance structure. Based on the likelihood displacement,the curvature measure is employed to evaluate the effects of some minor perturbations on the statistical inference, thus leading to the large curvature direction, which is the most critical diagnostic statistic in the context of the local influence analysis. As an application, the common covariance-weighted perturbation scheme is thoroughly considered. 展开更多
关键词 Growth curve model Rao's simple covariance structure w-model Likelihood displacement CURVATURE
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部