期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Extension of covariant derivative(Ⅱ): From flat space to curved space 被引量:4
1
作者 Ya-Jun Yin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第1期88-95,共8页
This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant fo... This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant form invariabil ity. Based on the generalized covariant derivative, a covari ant differential transformation group with orthogonal duality is set up. Through such orthogonal duality, tensor analy sis on curved surfaces is simplified intensively. Under the covariant differential transformation group, the differential invariabilities and integral invariabilities are constructed on curved surfaces. 展开更多
关键词 Tensor analysis on curved surfaces Classicalcovariant derivative and generalized covariant derivative Axiom of the covariant form invariability covariant differ-ential transformation group Differential invariabilities andintegral invariabilities
下载PDF
Generalized covariant differentiation and axiom-based tensor analysis 被引量:3
2
作者 Yajun YIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第3期379-394,共16页
This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomati... This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomatized definition, the algebraic structure, the transformation group, and the simple calculation of generalized covariant differentia- tions. These progresses strengthen the tendency of the axiomatization of tensor analysis. 展开更多
关键词 tensor analysis axiom of covariant form invariability generalized compo-nent generalized covariant differentiation covariant differential transformation group
下载PDF
Extension of covariant derivative(Ⅲ): From classical gradient to shape gradient 被引量:4
3
作者 Ya-Jun Yin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第1期96-103,共8页
This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant de... This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant derivative and the second one, the second covariant differential transformation group is set up. Under this transformation group, the sec ond class of differential invariants and integral invariants on curved surfaces is made clear. Besides, the symmetric struc ture of the tensor analysis on curved surfaces are revealed. 展开更多
关键词 Tensor analysis on curved surfaces The sec-ond generalized covariant derivative The second covariantdifferential transformation group The second class of dif-ferential and integral invariants
下载PDF
Generalized Covariant Derivative with Respect to Time in Flat Space(Ⅰ):Eulerian Description 被引量:2
4
作者 Yajun Yin 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第4期345-358,共14页
This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with... This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with respect to time for Eulerian component is defined;(b) the postulate of the covariant form invariability in time field is set up;(c) the generalized covariant derivative with respect to time for generalized Eulerian component is defined;(d) the algebraic structure of the generalized covariant derivative with respect to time is made clear;(e) the covariant differential transformation group in time filed is derived. These progresses reveal the covariant form invariability of Eulerian space and time. 展开更多
关键词 Eulerian description covariant form invariability generalized Eulerian component generalized covariant derivative with respect to time covariant differential transformation group
原文传递
Generalized Covariant Derivative with Respect to Time in Flat Space(Ⅱ):Lagrangian Description 被引量:2
5
作者 Yajun Yin 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第4期359-370,共12页
The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from ... The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from the Eulerian description to the Lagrangian description:on the basis of the postulate of covariant form invariability in time field, we define a new derivative in the Lagrangian description in flat space—the generalized covariant derivative of generalized Lagrangian component with respect to time. Besides, the covariant differential transformation group is set up. The covariant form invariability of Lagrangian space-time is ascertained. 展开更多
关键词 Lagrangian description the postulate of covariant form invariability generalized Lagrangian component generalized covariant derivative with respect to time covariant differential transformation group
原文传递
仿射对称变换与对称性原理 被引量:3
6
作者 自兴道 《云南大学学报(自然科学版)》 CAS CSCD 2001年第5期383-387,共5页
给出了物理空间的一种仿射对称变换 ,并论证了拉普拉斯方程、热传导方程、波动方程及连续性方程对于这个变换的协变性 ,由此得出对称性原理 ,为研究自然界普遍存在的仿射对称现象提供了数学物理依据 ,从理论上揭示了仿射对称现象 .
关键词 对称群 协变性 对称性原理 仿射对称变换 物理空间 狭义相对性原理
原文传递
多群核截面协方差矩阵转群方法研究
7
作者 王冬勇 郝琛 +3 位作者 赵强 吴宗佩 吴宏春 李富 《核动力工程》 EI CAS CSCD 北大核心 2016年第2期1-6,共6页
分析多群核截面协方差矩阵信息特点,采用平源近似研究多群核截面协方差矩阵转群方法并自主开发核截面协方差矩阵转群通用程序T-COCCO。以SCALE6.1程序自带44群核截面协方差矩阵信息为基础,通过T-COCCO对235U、238U、239Pu等核素的不同... 分析多群核截面协方差矩阵信息特点,采用平源近似研究多群核截面协方差矩阵转群方法并自主开发核截面协方差矩阵转群通用程序T-COCCO。以SCALE6.1程序自带44群核截面协方差矩阵信息为基础,通过T-COCCO对235U、238U、239Pu等核素的不同核反应进行核截面协方差矩阵能群结构转换,分别得到33群、47群和70群核截面协方差矩阵,并与NJOY程序制作的响应能群核截面协方差矩阵信息进行对比。对比研究及分析矩阵特性参数信息可知:在能群结构差异不大时(能群数目的变化在两倍以内),本文研究的转群方法是合理的,开发的程序可以方便、快捷、高效获得所需能群结构的核截面协方差矩阵信息,该信息可以用于开展核数据计算不确定性和敏感性分析。 展开更多
关键词 核截面 协方差矩阵 能群结构 转换方法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部