The coverage probability of both the cellular users and the Device-to-Device(D2D) users are analyzed. We assume that the cellular users are able to communication with the Base Station(BS) either by relying on the assi...The coverage probability of both the cellular users and the Device-to-Device(D2D) users are analyzed. We assume that the cellular users are able to communication with the Base Station(BS) either by relying on the assistance of Full-Duplex(FD) mode relays or via direct user-to-BS links with high-enough Signal-to-Interference-plus-Noise-Ratio(SINR). Note that the FD-mode devices are capable of simultaneously operating in two modes,i.e. the D2D mode and the cooperative relay mode,with the sum power consumption at these devices kept constant. The closedform expressions for coverage probability of both tier users are derived. After that,numerical analyses are provided,showing that the coverage probability of the both the cellular and the D2D users can be substantially influenced by a variety of parameters,including the power allocation factor of the relays,the density of users,and the self-interference imposed on the FD mode relays,etc. Furthermore,in the D2D enabled networks,it is shown that the FD relay aided transmission is beneficial to enhancing the coverage probability of the cellular users if the target SINR is lower than 5 d B.展开更多
More and more researches show that neither the critical downward acceleration nor the critical slope of water waves is a universal constant. On the contrary, they vary with particular wave conditions. This fact render...More and more researches show that neither the critical downward acceleration nor the critical slope of water waves is a universal constant. On the contrary, they vary with particular wave conditions. This fact renders the models either for the probability of wave breaking B or for the whitecap coverage W based on these criteria difficult to apply. In this paper and the one which follows we seek to develop models for the prediction of both B and W based on the kinematical criterion. First, several joint probabilistic distribution functions (PDFs) of wave characteristics are derived, based on which the breaking properties B and W are estimated. The estimation is made on the assumption that a wave breaks if the horizontal velocity of water particles at its crest exceeds the local wave celerity, and whitecapping occurs in regions of fluid where water particles travel faster than the waves. The consequent B and W depend on wave spectral moments of orders 0 to 4. Then the JONSWAP spectrum is used to represent the fetch limited sea waves in deep water, so as to relate the probability of wave breaking and the whitecap coverage with wind parameters. To this end, the time averaging technique proposed by Glazman (1986) is applied to the estimation of the spectral moments involved, and furthermore, the theoretical models are compared with available observations collected from published literature. From the comparison, the averaging time scale is determined. The final models show that the probability of wave breaking as well as the whitecap coverage depends on the dimensionless fetch. The agreement between these models and the database is reasonable.展开更多
The model for whitecap coverage and wave breaking probability are parameterized by the dimensionless wind fetch X^-. This paper aims at replacing X^- with other parameters such as the average wave period T^-, wind spe...The model for whitecap coverage and wave breaking probability are parameterized by the dimensionless wind fetch X^-. This paper aims at replacing X^- with other parameters such as the average wave period T^-, wind speed U10 or wave age ξ in order to improve the suitability and convenience of the model for application. First, W and B are expressed in terms of T^- and U10, which are relatively easy to measure in the field. Further, U10 is replaced with the friction velocity U. by use of the empirical relationship. As wave age has been widely used to parameterize spectral models of ocean waves and air-sea fluxes, W and B are then expressed as a simple function of wave age, respectively. The new forms of the model obtained are W= 1 - Ф(3.02ξ0"76) and B = exp( - 4.54ξ^1.52) . The two forms are mere applicable in pracrice, since ξ is relatively easy to measure or determine from wave and wind records. Comparisons between these expressions and data collected from published literature are made and agreement is fairly good.展开更多
Interference alignment (IA) is well understood to approach the capacity of interference channels, and believed to be crucial in cellular networks in which the ability to control and exploit interference is key. Howe...Interference alignment (IA) is well understood to approach the capacity of interference channels, and believed to be crucial in cellular networks in which the ability to control and exploit interference is key. However, the achievable performance of IA in cellular networks depends on the quality of channel state information (CSI) and how effective IA is in practical settings is not known. This paper studies the use of IA to mitigate inter-cell interference of cellular networks under imperfect CSI conditions. Our analysis is based on stochastic geometry where the structure of the base station (BS) locations is considered by a Poisson point process (PPP). Our main contribution is the coverage probability of the network and simulation results confirm the accuracy.展开更多
The ultra-dense network is a promising technology to increase the network capacity in the forthcoming fifthgeneration(5G)mobile communication networks by deploying lots of low power Small Base Stations(SBSs)which over...The ultra-dense network is a promising technology to increase the network capacity in the forthcoming fifthgeneration(5G)mobile communication networks by deploying lots of low power Small Base Stations(SBSs)which overlap with Macro Base Stations(MBSs).The interference and energy consumption increase rapidly with the number of SBSs although each SBS transmits with small power.In this paper,we model a downlink heterogeneous ultra-dense network where a lot of SBSs are randomly deployed with MBSs based on the Poisson point process.We derive the coverage probability and its variance,and analyze the area spectral efficiency and energy efficiency of the network considering three Fractional Power Control(FPC)strategies.The numerical results and Monte Carlo simulation results show that power control can mitigate the interference and balance the performances of inner-user and edge-user equipments.Especially,a great improvement of energy efficiency is archived with a little loss of area spectral efficiency when FPC is adopted.Finally,we analyze the effect of base stations’(BSs’)sleeping on the performance of the network when it is partially loaded.展开更多
Stochastic geometry is widely employed to model cellular network. But in most existing works, base stations(BSs) are modelled following a homogeneous Poisson point process(PPP) for one-tier network, or several indepen...Stochastic geometry is widely employed to model cellular network. But in most existing works, base stations(BSs) are modelled following a homogeneous Poisson point process(PPP) for one-tier network, or several independent homogeneous PPP for multi-tier network, which ignore the dependence among BSs. In this paper, a three-tier UDN(Ultra dense network) with Macrocell BSs(MBS) for basic coverage, Picocell BSs(PBSs) deployed outside the coverage area of MBSs for compensating coverage holes, and Femtocell BSs(FBSs) surrounding MBSs for capacity improvement modelled by point process with inter-tier dependence is proposed. The tier association probability, the coverage probability and area spectrum efficiency(ASE) are derived. Simulation results validate our derivation, and results show that the proposed network model has 25%-45% performance gain in ASE.展开更多
Purpose: To develop a new statistical index “percent CTV (clinical target vo-lume) coverage probability” (%CCP), defined as the probability that a specific percent (e.g., 95%) of the CTV can be reliably covered by t...Purpose: To develop a new statistical index “percent CTV (clinical target vo-lume) coverage probability” (%CCP), defined as the probability that a specific percent (e.g., 95%) of the CTV can be reliably covered by the prescription dose, for evaluating the coverage loss of brain (fractionated) stereotactic radiosurgery (SRS/fSRS) when the PTV (planning target volume) margin is zero. Methods: The random variable Q for CTV percent coverage was derived using a previously developed model for CTV random motion that follows a three-dimensional (3D) independent normal distribution with a zero mean and a standard deviation of 𝜎<sub>𝑆</sub>(for translation) or 𝜎<sub>𝛿</sub>(for rotation). Assuming both CTV and PTV are spherical with the same diameter d<sub>CTV</sub>, the cumulative distribution function of Q could be obtained analytically using the relation of sphere-sphere intersection. The %CCP was then derived as the reliability function of Q and was used to quantify the coverage loss for selected d<sub>CTV</sub>. Results: The 95%-95% clinical goal (95% of the times, at least 95% of the CTV is covered) is not achievable with d<sub>CTV</sub> mm. For common CTVs (d<sub>CTV</sub> mm) encountered in SRS/fSRS, only 60%-90% of the CTV could be reliably covered by the prescription dose 95% of the time. For 𝜎𝑆</sub></sub>=0.5mm and 𝜎𝛿</sub></sub> =0.4˚, the 95% CCP was the highest when the distance between the CTV and the isocenter 𝑑𝐼⇔𝑇</sub><sub></sub>=0 and gradually decreased with the increasing 𝑑<sub>𝐼⇔𝑇</sub></sub>. Conclusions: The %CCP was successfully derived for evaluating the CTV coverage loss for brain SRS/fSRS. When the PTV margin is zero, the 95%-95% clinical goal cannot be achieved for most targets (d<sub>CTV</sub> mm).展开更多
3GPP在版本16(R16,Release 16)中升级了最小化路测(MDT,minimization of drive test)技术,提出移动终端可利用4G/5G网络自主上报Wi-Fi信号的接收信号强度指示(RSSI,received signal strength indicator),为运营商度量Wi-Fi网络的覆盖率...3GPP在版本16(R16,Release 16)中升级了最小化路测(MDT,minimization of drive test)技术,提出移动终端可利用4G/5G网络自主上报Wi-Fi信号的接收信号强度指示(RSSI,received signal strength indicator),为运营商度量Wi-Fi网络的覆盖率带来了可能性。然而,现有基于MDT技术的网络覆盖度量方法严重依赖GPS提供的位置坐标,但全球定位系统(GPS,global positioning system)不能提供室内精准定位,无法用于室内Wi-Fi网络的覆盖度量。为此,提出了一种不依赖位置坐标的RSSI聚类方法,充分利用室内相近位置RSSI的统计相似性,区分不同位置的RSSI测量差异,在无位置坐标条件下准确估计出室内Wi-Fi网络的覆盖率。实验结果表明,所提方法估计的覆盖率与基于真实位置坐标测量的覆盖率相近,度量准确度明显优于现有的其他方法。展开更多
A new approach to calculate fault detection probabilities is presented. Fault-free simulation is used in the approach. The quantities of controllability and observability are defined as probabilities of controlling an...A new approach to calculate fault detection probabilities is presented. Fault-free simulation is used in the approach. The quantities of controllability and observability are defined as probabilities of controlling and observing the nodes in the circuit. The probability distribution of random signals on the circuit nodes is analyzed, and it is proved that controllability is in normal distribution. Thus the unbiasing estimation of the fault detection probability can be obtained. According to the concept of observability, we deal with the fan-out nodes. The fault coverages for actual circuits obtained from this approach agree favorably with the fault simulation results.展开更多
Low-earth orbit(LEO)satellite networks ignite global wireless connectivity.However,signal outages and co-channel interference limit the coverage in traditional LEO satellite networks where a user is served by a single...Low-earth orbit(LEO)satellite networks ignite global wireless connectivity.However,signal outages and co-channel interference limit the coverage in traditional LEO satellite networks where a user is served by a single satellite.This paper explores the possibility of satellite cooperation in the downlink transmissions.Using tools from stochastic geometry,we model and analyze the downlink coverage of a typical user with satellite cooperation under Nakagami fading channels.Moreover,we derive the joint distance distribution of cooperative LEO satellites to the typical user.Our model incorporates fading channels,cooperation among several satellites,satellites'density and altitude,and co-channel interference.Extensive Monte Carlo simulations are performed to validate analytical results.Simulation and numerical results suggest that coverage with LEO satellites cooperation considerably exceeds coverage without cooperation.Moreover,there are optimal satellite density and satellite altitude that maximize the coverage probability,which gives valuable network design insights.展开更多
Landsat data are the longest available records that consistently document global change.However,the extent and degree of cloud coverage typically determine its usability,especially in the tropics.In this study,scene-b...Landsat data are the longest available records that consistently document global change.However,the extent and degree of cloud coverage typically determine its usability,especially in the tropics.In this study,scene-based metadata from the U.S.Geological Survey Landsat inventories,ten-day,monthly,seasonal,and annual acquisition probabilities(AP)of targeted images at various cloud coverage thresholds(10%to 100%)were statistically analyzed using available Landsat TM,ETM+,and OLI observations over mainland Southeast Asia(MSEA)from 1986 to 2015.Four significant results were found.First,the cumulative average acquisition probability of available Landsat observations over MSEA at the 30%cloud cover(CC)threshold was approximately 41.05%.Second,monthly and ten-day level probability statistics for the 30%CC threshold coincide with the temporal distribution of the dry and rainy seasons.This demonstrates that Landsat images acquired during the dry season satisfy the requirements needed for land cover monitoring.Third,differences in acquisition probabilities at the 30%CC threshold are different between the western and eastern regions of MSEA.Finally,the ability of TM,ETM+,and OLI to acquire high-quality imagery has gradually enhanced over time,especially during the dry season,along with consequently larger probabilities at lower CC thresholds.展开更多
基金supported by Key Project of the National Natural Science Foundation of China (Grant No.61431001)National Natural Science Foundation of China (Grant Nos.61501182,U1501253,61377024)+3 种基金Research Foundation of Education Department of Hunan Province (Grant No.15C0558)Startup Foundation for Doctors of Hunan University of Science and Technology (Grant No.E51539)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education (Guilin University of Electronic Technology)Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘The coverage probability of both the cellular users and the Device-to-Device(D2D) users are analyzed. We assume that the cellular users are able to communication with the Base Station(BS) either by relying on the assistance of Full-Duplex(FD) mode relays or via direct user-to-BS links with high-enough Signal-to-Interference-plus-Noise-Ratio(SINR). Note that the FD-mode devices are capable of simultaneously operating in two modes,i.e. the D2D mode and the cooperative relay mode,with the sum power consumption at these devices kept constant. The closedform expressions for coverage probability of both tier users are derived. After that,numerical analyses are provided,showing that the coverage probability of the both the cellular and the D2D users can be substantially influenced by a variety of parameters,including the power allocation factor of the relays,the density of users,and the self-interference imposed on the FD mode relays,etc. Furthermore,in the D2D enabled networks,it is shown that the FD relay aided transmission is beneficial to enhancing the coverage probability of the cellular users if the target SINR is lower than 5 d B.
文摘More and more researches show that neither the critical downward acceleration nor the critical slope of water waves is a universal constant. On the contrary, they vary with particular wave conditions. This fact renders the models either for the probability of wave breaking B or for the whitecap coverage W based on these criteria difficult to apply. In this paper and the one which follows we seek to develop models for the prediction of both B and W based on the kinematical criterion. First, several joint probabilistic distribution functions (PDFs) of wave characteristics are derived, based on which the breaking properties B and W are estimated. The estimation is made on the assumption that a wave breaks if the horizontal velocity of water particles at its crest exceeds the local wave celerity, and whitecapping occurs in regions of fluid where water particles travel faster than the waves. The consequent B and W depend on wave spectral moments of orders 0 to 4. Then the JONSWAP spectrum is used to represent the fetch limited sea waves in deep water, so as to relate the probability of wave breaking and the whitecap coverage with wind parameters. To this end, the time averaging technique proposed by Glazman (1986) is applied to the estimation of the spectral moments involved, and furthermore, the theoretical models are compared with available observations collected from published literature. From the comparison, the averaging time scale is determined. The final models show that the probability of wave breaking as well as the whitecap coverage depends on the dimensionless fetch. The agreement between these models and the database is reasonable.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No.50479028)
文摘The model for whitecap coverage and wave breaking probability are parameterized by the dimensionless wind fetch X^-. This paper aims at replacing X^- with other parameters such as the average wave period T^-, wind speed U10 or wave age ξ in order to improve the suitability and convenience of the model for application. First, W and B are expressed in terms of T^- and U10, which are relatively easy to measure in the field. Further, U10 is replaced with the friction velocity U. by use of the empirical relationship. As wave age has been widely used to parameterize spectral models of ocean waves and air-sea fluxes, W and B are then expressed as a simple function of wave age, respectively. The new forms of the model obtained are W= 1 - Ф(3.02ξ0"76) and B = exp( - 4.54ξ^1.52) . The two forms are mere applicable in pracrice, since ξ is relatively easy to measure or determine from wave and wind records. Comparisons between these expressions and data collected from published literature are made and agreement is fairly good.
文摘Interference alignment (IA) is well understood to approach the capacity of interference channels, and believed to be crucial in cellular networks in which the ability to control and exploit interference is key. However, the achievable performance of IA in cellular networks depends on the quality of channel state information (CSI) and how effective IA is in practical settings is not known. This paper studies the use of IA to mitigate inter-cell interference of cellular networks under imperfect CSI conditions. Our analysis is based on stochastic geometry where the structure of the base station (BS) locations is considered by a Poisson point process (PPP). Our main contribution is the coverage probability of the network and simulation results confirm the accuracy.
基金the Major Program of the National Nature Science Foundation of China(Grant No.61831004).
文摘The ultra-dense network is a promising technology to increase the network capacity in the forthcoming fifthgeneration(5G)mobile communication networks by deploying lots of low power Small Base Stations(SBSs)which overlap with Macro Base Stations(MBSs).The interference and energy consumption increase rapidly with the number of SBSs although each SBS transmits with small power.In this paper,we model a downlink heterogeneous ultra-dense network where a lot of SBSs are randomly deployed with MBSs based on the Poisson point process.We derive the coverage probability and its variance,and analyze the area spectral efficiency and energy efficiency of the network considering three Fractional Power Control(FPC)strategies.The numerical results and Monte Carlo simulation results show that power control can mitigate the interference and balance the performances of inner-user and edge-user equipments.Especially,a great improvement of energy efficiency is archived with a little loss of area spectral efficiency when FPC is adopted.Finally,we analyze the effect of base stations’(BSs’)sleeping on the performance of the network when it is partially loaded.
基金partially supported by National 863 Program (2014AA01A702)national major project (2016ZX03001011-005)national natural science foundation project (61521061)
文摘Stochastic geometry is widely employed to model cellular network. But in most existing works, base stations(BSs) are modelled following a homogeneous Poisson point process(PPP) for one-tier network, or several independent homogeneous PPP for multi-tier network, which ignore the dependence among BSs. In this paper, a three-tier UDN(Ultra dense network) with Macrocell BSs(MBS) for basic coverage, Picocell BSs(PBSs) deployed outside the coverage area of MBSs for compensating coverage holes, and Femtocell BSs(FBSs) surrounding MBSs for capacity improvement modelled by point process with inter-tier dependence is proposed. The tier association probability, the coverage probability and area spectrum efficiency(ASE) are derived. Simulation results validate our derivation, and results show that the proposed network model has 25%-45% performance gain in ASE.
文摘Purpose: To develop a new statistical index “percent CTV (clinical target vo-lume) coverage probability” (%CCP), defined as the probability that a specific percent (e.g., 95%) of the CTV can be reliably covered by the prescription dose, for evaluating the coverage loss of brain (fractionated) stereotactic radiosurgery (SRS/fSRS) when the PTV (planning target volume) margin is zero. Methods: The random variable Q for CTV percent coverage was derived using a previously developed model for CTV random motion that follows a three-dimensional (3D) independent normal distribution with a zero mean and a standard deviation of 𝜎<sub>𝑆</sub>(for translation) or 𝜎<sub>𝛿</sub>(for rotation). Assuming both CTV and PTV are spherical with the same diameter d<sub>CTV</sub>, the cumulative distribution function of Q could be obtained analytically using the relation of sphere-sphere intersection. The %CCP was then derived as the reliability function of Q and was used to quantify the coverage loss for selected d<sub>CTV</sub>. Results: The 95%-95% clinical goal (95% of the times, at least 95% of the CTV is covered) is not achievable with d<sub>CTV</sub> mm. For common CTVs (d<sub>CTV</sub> mm) encountered in SRS/fSRS, only 60%-90% of the CTV could be reliably covered by the prescription dose 95% of the time. For 𝜎𝑆</sub></sub>=0.5mm and 𝜎𝛿</sub></sub> =0.4˚, the 95% CCP was the highest when the distance between the CTV and the isocenter 𝑑𝐼⇔𝑇</sub><sub></sub>=0 and gradually decreased with the increasing 𝑑<sub>𝐼⇔𝑇</sub></sub>. Conclusions: The %CCP was successfully derived for evaluating the CTV coverage loss for brain SRS/fSRS. When the PTV margin is zero, the 95%-95% clinical goal cannot be achieved for most targets (d<sub>CTV</sub> mm).
文摘3GPP在版本16(R16,Release 16)中升级了最小化路测(MDT,minimization of drive test)技术,提出移动终端可利用4G/5G网络自主上报Wi-Fi信号的接收信号强度指示(RSSI,received signal strength indicator),为运营商度量Wi-Fi网络的覆盖率带来了可能性。然而,现有基于MDT技术的网络覆盖度量方法严重依赖GPS提供的位置坐标,但全球定位系统(GPS,global positioning system)不能提供室内精准定位,无法用于室内Wi-Fi网络的覆盖度量。为此,提出了一种不依赖位置坐标的RSSI聚类方法,充分利用室内相近位置RSSI的统计相似性,区分不同位置的RSSI测量差异,在无位置坐标条件下准确估计出室内Wi-Fi网络的覆盖率。实验结果表明,所提方法估计的覆盖率与基于真实位置坐标测量的覆盖率相近,度量准确度明显优于现有的其他方法。
基金Supported by the National Science Foundation of Chinathe Young Teacher Foundation of the Ministry of Posts and Telecommunications of China
文摘A new approach to calculate fault detection probabilities is presented. Fault-free simulation is used in the approach. The quantities of controllability and observability are defined as probabilities of controlling and observing the nodes in the circuit. The probability distribution of random signals on the circuit nodes is analyzed, and it is proved that controllability is in normal distribution. Thus the unbiasing estimation of the fault detection probability can be obtained. According to the concept of observability, we deal with the fan-out nodes. The fault coverages for actual circuits obtained from this approach agree favorably with the fault simulation results.
文摘Low-earth orbit(LEO)satellite networks ignite global wireless connectivity.However,signal outages and co-channel interference limit the coverage in traditional LEO satellite networks where a user is served by a single satellite.This paper explores the possibility of satellite cooperation in the downlink transmissions.Using tools from stochastic geometry,we model and analyze the downlink coverage of a typical user with satellite cooperation under Nakagami fading channels.Moreover,we derive the joint distance distribution of cooperative LEO satellites to the typical user.Our model incorporates fading channels,cooperation among several satellites,satellites'density and altitude,and co-channel interference.Extensive Monte Carlo simulations are performed to validate analytical results.Simulation and numerical results suggest that coverage with LEO satellites cooperation considerably exceeds coverage without cooperation.Moreover,there are optimal satellite density and satellite altitude that maximize the coverage probability,which gives valuable network design insights.
基金This work was supported by the National Natural Science Foundation of China(NSFC)under grants(41301090 and 41271117).
文摘Landsat data are the longest available records that consistently document global change.However,the extent and degree of cloud coverage typically determine its usability,especially in the tropics.In this study,scene-based metadata from the U.S.Geological Survey Landsat inventories,ten-day,monthly,seasonal,and annual acquisition probabilities(AP)of targeted images at various cloud coverage thresholds(10%to 100%)were statistically analyzed using available Landsat TM,ETM+,and OLI observations over mainland Southeast Asia(MSEA)from 1986 to 2015.Four significant results were found.First,the cumulative average acquisition probability of available Landsat observations over MSEA at the 30%cloud cover(CC)threshold was approximately 41.05%.Second,monthly and ten-day level probability statistics for the 30%CC threshold coincide with the temporal distribution of the dry and rainy seasons.This demonstrates that Landsat images acquired during the dry season satisfy the requirements needed for land cover monitoring.Third,differences in acquisition probabilities at the 30%CC threshold are different between the western and eastern regions of MSEA.Finally,the ability of TM,ETM+,and OLI to acquire high-quality imagery has gradually enhanced over time,especially during the dry season,along with consequently larger probabilities at lower CC thresholds.