With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environmen...With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.展开更多
FeOOH supported on organo-bentonite was prepared by organo-bentonite with good absorptive property,and the effects of dosage of the composite adsorbent,temperature,and Cr(Ⅵ)concentration on the removal rate of Cr(Ⅵ)...FeOOH supported on organo-bentonite was prepared by organo-bentonite with good absorptive property,and the effects of dosage of the composite adsorbent,temperature,and Cr(Ⅵ)concentration on the removal rate of Cr(Ⅵ)in the simulated wastewater were studied.The results indicated that the removal effect of Cr(Ⅵ)was good when the mass fraction of organo-bentonite was 3‰.The removal rate of Cr(Ⅵ)from the simulated wastewater could reach the maximum 98.37% under the following conditions:the dosage of the composite adsorbent was 1.0g;the temperature was 25℃;Cr(Ⅵ)concentration was 10mg/L;the oscillating time was 4h.展开更多
A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in...A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in detail.At pH of 5.0 and temperature of 323.15 K,MFH@GO had higher adsorption capacity to Cr(VI)(58.4 mg/g)than the unmodified fungus and GO.Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),thermogravimetry and differential thermal analysis(TG-DTA),scanning electron microscopy and energy dispersive X-Ray spectroscopy(SEM-EDX)were employed to determine the characteristics of MFH@GO.Results showed that magnetic graphene oxide nanoparticles significantly enhanced the physiochemical properties of the fungi.In addition,the adsorption mechanisms analyses show that Cr(VI)could be reduced and mineralized into ferric chromate in residues.These results suggested that MFH@GO could be used as an promising and alternative biosorbent for removal of Cr(VI)from industrial wastewater.展开更多
Coal fly ashes WSRA and BQRA were ball milled for 5 h to produce their ultrafine coal fly ashes WSUA and BQUA, respectively. Batch kinetic, isotherm and pH effect on adsorption were studied to evaluate removal of Cr ...Coal fly ashes WSRA and BQRA were ball milled for 5 h to produce their ultrafine coal fly ashes WSUA and BQUA, respectively. Batch kinetic, isotherm and pH effect on adsorption were studied to evaluate removal of Cr (VI) from aqueous solutions by ultrafine coal fly ashes comparing with raw coal fly ashes. The kinetics of adsorption indicates the process to be intraparticle diffusion controlled and follows the Lagergren first-order kinetics for all coal fly ashes. The first-order rate constants (k1) of Cr (VI) adsorption onto WSRA, WSUA, BQRA and BQUA are 1.981, 1.497, 2.119 and 1.500 (×10^-2) min^-1, respectively. The adsorption capacities of WSUA and BQUA are much better than those of WSRA and BQRA. Equilibrium adsorption data of all coal fly ashes well satisfy the Langmuir isotherm. The adsorbed amounts of Cr (VI) onto WSUA and BQUA decrease from pH 2 to pH 6 and then increase up to pH 12.展开更多
Cr(Ⅵ)-bearing wastewater can be treated by natural pyrrhotite which is used for reductant to reduce Cr(Ⅵ) and precipitant to precipitate Cr(Ⅲ) simultaneously. The disposal products can be divided into three parts i...Cr(Ⅵ)-bearing wastewater can be treated by natural pyrrhotite which is used for reductant to reduce Cr(Ⅵ) and precipitant to precipitate Cr(Ⅲ) simultaneously. The disposal products can be divided into three parts in the beakers, namely supernatant in the upper part, the yellowish colloidal precipitates in the middle part and the pyrrhotite in the lower part. The content of total Cr=Cr(Ⅵ)+Cr(Ⅲ) in the supernatant liquid is 0.06 mg/L, which is lower than 1.5 mg/L of the discharge standard of China and near to 0.05 mg/L of the standard of potable water. This one-step disposal composing of both reduction and precipitation which is traditionally divided into two independent steps called reducing technology and precipitating technology respectively. The new method is of obvious economic advantage and favourable to decreasing surplus mud derived from adding Ca(OH)2 to precipitate Cr(Ⅲ) traditionally so as to avoid recontamination. In fact, sodium sulfite (Na2SO3) used in disposal of Cr(Ⅵ) was展开更多
基金supported by the National Natural Science Foundation of China (No.52364022)the Natural Science Foundation of Guangxi Province,China (Nos.2023JJA160192 and 2021GXNSFAA220096)+1 种基金the Guangxi Science and Technology Major Project,China (No.AA23073018)the Guangxi Chongzuo Science and Technology Plan,China (No.2023ZY00503).
文摘With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.
文摘FeOOH supported on organo-bentonite was prepared by organo-bentonite with good absorptive property,and the effects of dosage of the composite adsorbent,temperature,and Cr(Ⅵ)concentration on the removal rate of Cr(Ⅵ)in the simulated wastewater were studied.The results indicated that the removal effect of Cr(Ⅵ)was good when the mass fraction of organo-bentonite was 3‰.The removal rate of Cr(Ⅵ)from the simulated wastewater could reach the maximum 98.37% under the following conditions:the dosage of the composite adsorbent was 1.0g;the temperature was 25℃;Cr(Ⅵ)concentration was 10mg/L;the oscillating time was 4h.
基金Project(18B195)supported by Excellent Youth Project of Hunan Education Department,ChinaProjects(51804353,51704093)supported by the National Natural Science Foundation of China+2 种基金Project(kq1801074)supported by Key Projects of Changsha Science and Technology Plan,ChinaProject(2018JJ4010)supported by Hunan Provincial Natural Science Foundation of China(Joint Funds of Provincial and Zhuzhou Municipal)Project(2018JJ3885)supported by Natural Science Foundation of Hunan Province of China(Science Foundation for Youths)。
文摘A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in detail.At pH of 5.0 and temperature of 323.15 K,MFH@GO had higher adsorption capacity to Cr(VI)(58.4 mg/g)than the unmodified fungus and GO.Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),thermogravimetry and differential thermal analysis(TG-DTA),scanning electron microscopy and energy dispersive X-Ray spectroscopy(SEM-EDX)were employed to determine the characteristics of MFH@GO.Results showed that magnetic graphene oxide nanoparticles significantly enhanced the physiochemical properties of the fungi.In addition,the adsorption mechanisms analyses show that Cr(VI)could be reduced and mineralized into ferric chromate in residues.These results suggested that MFH@GO could be used as an promising and alternative biosorbent for removal of Cr(VI)from industrial wastewater.
基金Funded by the China Post Doctoral Science Foundation (20070411124)the Scientific and Technological Key Project of Shaanxi Province (2006k07-G19)+1 种基金the Industrialization Project of Shaanxi Provincal Department of Education(06JC11)the Scientific and Technological Key Project of Xi’anCity(GG06074)
文摘Coal fly ashes WSRA and BQRA were ball milled for 5 h to produce their ultrafine coal fly ashes WSUA and BQUA, respectively. Batch kinetic, isotherm and pH effect on adsorption were studied to evaluate removal of Cr (VI) from aqueous solutions by ultrafine coal fly ashes comparing with raw coal fly ashes. The kinetics of adsorption indicates the process to be intraparticle diffusion controlled and follows the Lagergren first-order kinetics for all coal fly ashes. The first-order rate constants (k1) of Cr (VI) adsorption onto WSRA, WSUA, BQRA and BQUA are 1.981, 1.497, 2.119 and 1.500 (×10^-2) min^-1, respectively. The adsorption capacities of WSUA and BQUA are much better than those of WSRA and BQRA. Equilibrium adsorption data of all coal fly ashes well satisfy the Langmuir isotherm. The adsorbed amounts of Cr (VI) onto WSUA and BQUA decrease from pH 2 to pH 6 and then increase up to pH 12.
文摘Cr(Ⅵ)-bearing wastewater can be treated by natural pyrrhotite which is used for reductant to reduce Cr(Ⅵ) and precipitant to precipitate Cr(Ⅲ) simultaneously. The disposal products can be divided into three parts in the beakers, namely supernatant in the upper part, the yellowish colloidal precipitates in the middle part and the pyrrhotite in the lower part. The content of total Cr=Cr(Ⅵ)+Cr(Ⅲ) in the supernatant liquid is 0.06 mg/L, which is lower than 1.5 mg/L of the discharge standard of China and near to 0.05 mg/L of the standard of potable water. This one-step disposal composing of both reduction and precipitation which is traditionally divided into two independent steps called reducing technology and precipitating technology respectively. The new method is of obvious economic advantage and favourable to decreasing surplus mud derived from adding Ca(OH)2 to precipitate Cr(Ⅲ) traditionally so as to avoid recontamination. In fact, sodium sulfite (Na2SO3) used in disposal of Cr(Ⅵ) was