Herein, the effect of high chloride ion(Cl^-) concentration on the corrosion behavior and passive film breakdown of 13Cr martensitic stainless steel under CO_2 environment was demonstrated. The Cl^- concentration was ...Herein, the effect of high chloride ion(Cl^-) concentration on the corrosion behavior and passive film breakdown of 13Cr martensitic stainless steel under CO_2 environment was demonstrated. The Cl^- concentration was varied from 30 to 150 g/L and cyclic potentiodynamic polarization was conducted to investigate the influence of the Cl^- concentration on the corrosion potential(E_(corr)), passive breakdown potential(E_(pit)), and repassivation potential(E_(rep)). The results of the polarization curves revealed that 13Cr stainless steel is susceptible to pitting under high Cl^- concentration. The passive breakdown potential and repassivation potential decreased with the increase of Cl-concentration. The semiconducting behavior of the passive film was investigated by Mott-Schottky analysis and the point defect model(PDM). It was observed that the iron cation vacancies and oxygen vacancies were continuously generated by autocatalytic reactions and the higher Cl^- concentration resulted in higher vacancies in the passive film. Once the excess vacancies condensed at the metal/film interface, the passive film became locally detached from the metal, which led to the breakdown of the passive film.展开更多
A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength oper...A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.展开更多
We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generat...We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generated at a repetition rate of 285.7 kHz,approaching or very near the intrinsic upper limit imposed by the recovery time of the Cr^(4+):YAG saturable absorber,and the resulting pulse energy,duration and peak power are,respectively,8.2μJ,39.2ns and 0.209kW.展开更多
Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency o...Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency of 12.6% and a slope efficiency of 25.8% is obtained under a pump power of 4.1 W. A minimum pulse width of 1.1 ns with a pulse repetition rate of 20.2kHz is obtained, and the corresponding pulse energy and peak power are 25.6μJ and 23.3kW, respectively. To our knowledge, the 23.3kW peak power is the highest among 1123nm lasers. Additionally, based on the 1123 nm laser, with LBO as the frequency doubler, a 288-mW green-yellow laser at 561 nm is successfully achieved.展开更多
A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at...A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at the pump power of 16.65 W, corresponding to an optical-to-optical conversion efficiency of 16.4%. At the same time, the pulse width, pulse repetition rate, single pulse energy and peak power are 27.2ns, 9 kHz, 303.3#3 and 11.2kW, respectively. As far as we know, the result gives the highest average output power at 1112nm generated by an 808 nm diode-end-pumped Nd:YAG laser.展开更多
We report a cw Tm:YAP laser resonantly pumped Ho:LuV04 laser in passively Q-switched (PQS) mode with Cr2+ :ZnS as a saturable absorber (SA). The influence of different transmittances of the output coupler on l...We report a cw Tm:YAP laser resonantly pumped Ho:LuV04 laser in passively Q-switched (PQS) mode with Cr2+ :ZnS as a saturable absorber (SA). The influence of different transmittances of the output coupler on laser output performance is analyzed. With T = 50%, the max/mum PQS average output power of 2.3 W is ob- tained, corresponding to the slope efficiency and the optical-optical conversion efficiency are 35.1% and 19.8%, respectively. Also, the minimum pulse width of 100ns is achieved at the maximum pulse repetition frequency of 34.2kHz. When the maximum cw output power is 2.7W, the beam quality factor of the horizontal direc- tion Mx2 = 1.04 and the vertical direction M2 = 1.10 are obtained. In addition, the central wavelength of the laser output remains to be 2057.5nm with the output coupler transmittances of 50% and 60% in both cw and PQS operations. The results show that the Cr2+:ZnS can be used as an SA in a Ho:LuVO4 laser around 2-μm wavelength.展开更多
A cw operation and a passively Q-switched (PQS) Ho:SSO laser (Cr2+ :ZnSe as a saturable absorber) end-pumped by a TIn:YAP laser operating at near room temperature are reported. It is the first time to report a...A cw operation and a passively Q-switched (PQS) Ho:SSO laser (Cr2+ :ZnSe as a saturable absorber) end-pumped by a TIn:YAP laser operating at near room temperature are reported. It is the first time to report a PQS Ho:SSO laser. For the ew mode, a maximum cw output power of 3.0 W is obtMned, corresponding to a slope efficiency of 31.4%. For the PQS mode, a Cr2+ :ZnSe is used as the saturable absorber, with transmission of 88.4% at 2112nm. A maximum pulse energy of 1.29mJ is obtained, corresponding to the pulse repetition frequency of 2.42kHz. In this study, we change the distance between Cr2+ :ZnSe and the output mirror to research the pulse characteristic of the PQ, S Ho:SSO laser. The minimum pulse width of 73.5ns is obtained, corresponding to the pulse energy of O. 9 mJ and the pulse repetition frequency of 2.65 kHz.展开更多
Output performance of a continuous-wave TIn:YAP laser pumped passively Q-switched Ho:YLF laser is demon- strated with a polycrystalline Cr2+ :ZnS as the saturable absorber. We compare the experimental results at t...Output performance of a continuous-wave TIn:YAP laser pumped passively Q-switched Ho:YLF laser is demon- strated with a polycrystalline Cr2+ :ZnS as the saturable absorber. We compare the experimental results at the three different distances L of the polycrystalline Cr2+ :ZnS saturable absorber to the output coupler. The pulse width almost remains constant for different L, when the incident pump power is changed in the range of 7.9 27.1 W. The shortest pulse duration of 33.3 ns for L = 105 mm and the highest average output power of 6.8 W for L = 5 mm are obtMned at the incident pump power of 27.1 W. The output wavelength of the passively Q-switched laser shifts to 2045.2nm from 2064.7nm in the cw operation. The beam quality factor of M2 is 1.2.展开更多
Diode end-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency for laser range finding and warning receiver applications as well as day and night military laser designati...Diode end-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency for laser range finding and warning receiver applications as well as day and night military laser designation systems. In this paper we presents theoretical calculations using Advanced Dynamics Professional LASCAD software and experimental studies for a high power pigtailed fiber diode laser module of 8 W operating at 808 nm with a specially designed high efficiency cooling system, end pumped high-efficiency Nd:YVO4 laser of 3 × 3 × 10 mm rod and overall cavity length of 44 mm. To the best of our knowledge a self Q-switching effects was generated in Nd:YVO4 laser by changing the cavity dimensions and the position of the intracavity KTP crystal at certain regime of operation for the first time, in which the cavity length is reduced to be 30 mm and the distance between Nd:YVO4 rod and KTP crystal is only 1mm. Self Q-switched laser pulse at 532 nm with high peak power of 96 W, pulse width of 88 ns at FWHM and repetition rate of 400 kHz was achieved. Experimental studies of a passive Q-switched Nd:YVO4 laser using Cr:YAG crystal with three different transmissions of 30%, 40% and 70% were investigated. Passive Q-switched laser pulse at 1064 nm and narrow line width of less than 1.5 nm with highest peak power of nearly 18 kW, short pulse width of less than 4 ns at FWHM and higher repetition rate of 45 kHz using Cr:YAG with transmission of 30% was achieved for the first time.展开更多
基金financially supported by the National Science and Technology Major Project of China (No. 2016ZX05028-004)
文摘Herein, the effect of high chloride ion(Cl^-) concentration on the corrosion behavior and passive film breakdown of 13Cr martensitic stainless steel under CO_2 environment was demonstrated. The Cl^- concentration was varied from 30 to 150 g/L and cyclic potentiodynamic polarization was conducted to investigate the influence of the Cl^- concentration on the corrosion potential(E_(corr)), passive breakdown potential(E_(pit)), and repassivation potential(E_(rep)). The results of the polarization curves revealed that 13Cr stainless steel is susceptible to pitting under high Cl^- concentration. The passive breakdown potential and repassivation potential decreased with the increase of Cl-concentration. The semiconducting behavior of the passive film was investigated by Mott-Schottky analysis and the point defect model(PDM). It was observed that the iron cation vacancies and oxygen vacancies were continuously generated by autocatalytic reactions and the higher Cl^- concentration resulted in higher vacancies in the passive film. Once the excess vacancies condensed at the metal/film interface, the passive film became locally detached from the metal, which led to the breakdown of the passive film.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632704
文摘A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.
基金Supported by the National Natural Science Foundation of China under Grant No 11574170
文摘We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generated at a repetition rate of 285.7 kHz,approaching or very near the intrinsic upper limit imposed by the recovery time of the Cr^(4+):YAG saturable absorber,and the resulting pulse energy,duration and peak power are,respectively,8.2μJ,39.2ns and 0.209kW.
基金Supported by the Foundation of Shandong Province under Grant No J13LN28the National Natural Science Foundation of China under Grant No 11304184
文摘Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency of 12.6% and a slope efficiency of 25.8% is obtained under a pump power of 4.1 W. A minimum pulse width of 1.1 ns with a pulse repetition rate of 20.2kHz is obtained, and the corresponding pulse energy and peak power are 25.6μJ and 23.3kW, respectively. To our knowledge, the 23.3kW peak power is the highest among 1123nm lasers. Additionally, based on the 1123 nm laser, with LBO as the frequency doubler, a 288-mW green-yellow laser at 561 nm is successfully achieved.
基金Supported by the Natural Science Foundation of Shandong Province under Grant Nos ZR2015FM018 and ZR2014FM028the National Natural Science Foundation of China under Grant No 61475086
文摘A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at the pump power of 16.65 W, corresponding to an optical-to-optical conversion efficiency of 16.4%. At the same time, the pulse width, pulse repetition rate, single pulse energy and peak power are 27.2ns, 9 kHz, 303.3#3 and 11.2kW, respectively. As far as we know, the result gives the highest average output power at 1112nm generated by an 808 nm diode-end-pumped Nd:YAG laser.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009,61405047 and 50990301the China Postdoctoral Science Foundation Funded Project under Grant No 2013M540288+2 种基金the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310the Natural Science Foundation of Heilongjiang Province under Grant No LBH-Z14085
文摘We report a cw Tm:YAP laser resonantly pumped Ho:LuV04 laser in passively Q-switched (PQS) mode with Cr2+ :ZnS as a saturable absorber (SA). The influence of different transmittances of the output coupler on laser output performance is analyzed. With T = 50%, the max/mum PQS average output power of 2.3 W is ob- tained, corresponding to the slope efficiency and the optical-optical conversion efficiency are 35.1% and 19.8%, respectively. Also, the minimum pulse width of 100ns is achieved at the maximum pulse repetition frequency of 34.2kHz. When the maximum cw output power is 2.7W, the beam quality factor of the horizontal direc- tion Mx2 = 1.04 and the vertical direction M2 = 1.10 are obtained. In addition, the central wavelength of the laser output remains to be 2057.5nm with the output coupler transmittances of 50% and 60% in both cw and PQS operations. The results show that the Cr2+:ZnS can be used as an SA in a Ho:LuVO4 laser around 2-μm wavelength.
基金Supported by the National Natural Science Foundation of China under Grant No 61405046the Natural Science Foundation of Heilongjiang Province under Grant No 51305089
文摘A cw operation and a passively Q-switched (PQS) Ho:SSO laser (Cr2+ :ZnSe as a saturable absorber) end-pumped by a TIn:YAP laser operating at near room temperature are reported. It is the first time to report a PQS Ho:SSO laser. For the ew mode, a maximum cw output power of 3.0 W is obtMned, corresponding to a slope efficiency of 31.4%. For the PQS mode, a Cr2+ :ZnSe is used as the saturable absorber, with transmission of 88.4% at 2112nm. A maximum pulse energy of 1.29mJ is obtained, corresponding to the pulse repetition frequency of 2.42kHz. In this study, we change the distance between Cr2+ :ZnSe and the output mirror to research the pulse characteristic of the PQ, S Ho:SSO laser. The minimum pulse width of 73.5ns is obtained, corresponding to the pulse energy of O. 9 mJ and the pulse repetition frequency of 2.65 kHz.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009,61405047,and 50990301the Postdoctoral Science Foundation of China under Grant No 2013M540288+1 种基金the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310
文摘Output performance of a continuous-wave TIn:YAP laser pumped passively Q-switched Ho:YLF laser is demon- strated with a polycrystalline Cr2+ :ZnS as the saturable absorber. We compare the experimental results at the three different distances L of the polycrystalline Cr2+ :ZnS saturable absorber to the output coupler. The pulse width almost remains constant for different L, when the incident pump power is changed in the range of 7.9 27.1 W. The shortest pulse duration of 33.3 ns for L = 105 mm and the highest average output power of 6.8 W for L = 5 mm are obtMned at the incident pump power of 27.1 W. The output wavelength of the passively Q-switched laser shifts to 2045.2nm from 2064.7nm in the cw operation. The beam quality factor of M2 is 1.2.
文摘Diode end-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency for laser range finding and warning receiver applications as well as day and night military laser designation systems. In this paper we presents theoretical calculations using Advanced Dynamics Professional LASCAD software and experimental studies for a high power pigtailed fiber diode laser module of 8 W operating at 808 nm with a specially designed high efficiency cooling system, end pumped high-efficiency Nd:YVO4 laser of 3 × 3 × 10 mm rod and overall cavity length of 44 mm. To the best of our knowledge a self Q-switching effects was generated in Nd:YVO4 laser by changing the cavity dimensions and the position of the intracavity KTP crystal at certain regime of operation for the first time, in which the cavity length is reduced to be 30 mm and the distance between Nd:YVO4 rod and KTP crystal is only 1mm. Self Q-switched laser pulse at 532 nm with high peak power of 96 W, pulse width of 88 ns at FWHM and repetition rate of 400 kHz was achieved. Experimental studies of a passive Q-switched Nd:YVO4 laser using Cr:YAG crystal with three different transmissions of 30%, 40% and 70% were investigated. Passive Q-switched laser pulse at 1064 nm and narrow line width of less than 1.5 nm with highest peak power of nearly 18 kW, short pulse width of less than 4 ns at FWHM and higher repetition rate of 45 kHz using Cr:YAG with transmission of 30% was achieved for the first time.