NdTbCo/Cr amorphous films with high perpendicular magnetic anisotropy were prepared onto glass substrates by rf magnetron sputtering. The effects of Nd substitution on the magnetic and magneto-optical properties of Tb...NdTbCo/Cr amorphous films with high perpendicular magnetic anisotropy were prepared onto glass substrates by rf magnetron sputtering. The effects of Nd substitution on the magnetic and magneto-optical properties of TbCo/Cr films were investigated. It was found that partial Tb substitution by Nd would increase the saturation magnetization and the Kerr rotation angle, change the temperature dependence of magneto-optical characteristics. These results can be explained by the ferrimagnetic structure of the rare earth-transition metal alloy. When the magnetic layer composition was (Nd0.265Tb0.735)31Co69, a saturation magnetization of 247 emu/cm^3 and a coercivity of 3.8 kOe at room temperature could be obtained.展开更多
For high-power impulse magnetron sputtering(HIPIMS),the peak power applied to the target is of great importance for regulating the ionization degree of the metal target and ion/atom flux ratio.In this work,chromium(Cr...For high-power impulse magnetron sputtering(HIPIMS),the peak power applied to the target is of great importance for regulating the ionization degree of the metal target and ion/atom flux ratio.In this work,chromium(Cr)films were deposited on 316-L stainless steel substrates and silicon(100) wafers with different peak powers by HIPIMS.The relationship between peak target power and properties of Cr films was explored in detail.The resulting structure and mechanical properties of deposited Cr films were characterized by X-ray diffraction(XRD),transmission electron microscope(TEM),atomic force microscopy(AFM),indentation hardness and scratch tester.The results indicate that the ionization degree of metal target and ion/atom flux ratio increase with the increase in peak power but without the loss of deposition rate at the same time.At low ionization degree,the deposited Cr film has low compressive residual stress and low hardness but good adhesion strength.When the ionization degree of target metal increases with increasing peak power,Cr film exhibits finer size and smoother surface with improved hardness but decreased adhesion strength.展开更多
The thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films are studied in this paper. Several types of adhesion layers were investigated: 10.0 nm Pt, 1.5 nm Cr + 50.0 nm Pt, 2.5 nm ...The thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films are studied in this paper. Several types of adhesion layers were investigated: 10.0 nm Pt, 1.5 nm Cr + 50.0 nm Pt, 2.5 nm Cr + 50.0 nm Pt and 3.5 nm Cr + 50.0 nm Pt fabricated using direct current magnetron sputtering. The variation of layer thickness, roughness, crystallization and surface topography of Pt/Cr films were analyzed by grazing incidence X-ray reflectometry, large angle X-ray diffraction and optical profiler before and after heating. 2.5 nm Cr + 50.0 nm Pt film exhibits the best thermal stability and separation characteristics according to the heating and hot slumping experiments. The film was also applied as an anti-sticking layer to optimize the maximum temperature of the hot slumping technique.展开更多
With the development of industry, much attention has been paid to lengthening the life span of bearings. As reported in this paper, we investigated the Cr/CrN compound films formed on the specimens of W9Cr4V2Mo bearin...With the development of industry, much attention has been paid to lengthening the life span of bearings. As reported in this paper, we investigated the Cr/CrN compound films formed on the specimens of W9Cr4V2Mo bearing steel by ion beam assisted deposition for improving the performance of bearing steels. The Vicker's microhardness, pin-on-disc, electrochemical measurement, XRD and SEM tests were used to characterize and analyze the treated samples. All results indicated that the mechanical properties of the treated samples were good, with the microhardness greater than that of the uncoated specimen, and the wear resistance, the passivity and pitting corrosion resistance increased considerably, the films possessed alternate Cr and CrN compound phases and produced different effects on the improvement of the performance of W9Cr4V2Mo bearing steels with different composing phases.展开更多
Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are ...Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are characterized systematically by field-emission scanning electron microscope, x-ray diffraction, Raman spectra, nanoindentation and scratch. It is shown that optimal Cr metal forms nanocrystalline carbide to improve the hardness, toughness and adhesion strength in the amorphous carbon matrix, which possesses relatively higher nano-hardness of 15. 7 CPa, elastic modulus of 126.8 GPa and best adhesion strength with critical load (Lc) of 36 N for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm. The friction and wear behaviors of as-deposited Cr/a-C:H films are evaluated under both the ambient air and deionized water conditions. The results reveal that it can achieve superior low friction and anti-wear performance for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm under the ambient air condition, and the friction coetllcient and wear rate tested in deionized water condition are relatively lower compared with those tested under the ambient air condition for each film. Superior combination of mechanical and tribological properties for the Cr/a-C:H film should be a good candidate for engineering applications.展开更多
In order to improve the length of plasma in a whole tube and mechanical properties of Cr films deposited on the inner surface of the tube, a high-power impulse magnetron sputtering coating method with a planar cathode...In order to improve the length of plasma in a whole tube and mechanical properties of Cr films deposited on the inner surface of the tube, a high-power impulse magnetron sputtering coating method with a planar cathode target and auxiliary anode was proposed. The auxiliary anode was placed near the tube tail to attract plasma into the inner part of the tube. Cr films were deposited on the inner wall of a 20# carbon steel tube with a diameter of 40 mm and length of 120 mm. The influence of auxiliary anode voltage on the discharge characteristics of the Cr target, and the structure and mechanical properties of Cr films deposited on the inner surface of the tube were explored. With higher auxiliary anode voltage, an increase in substrate current was observed, especially in the tube tail. The thickness uniformity, compactness, hardness and H/E ratios of the Cr films deposited on the inner surface of the tube increased with the increase in auxiliary anode voltage. The Cr films deposited with auxiliary anode voltage of 60 V exhibited the highest hardness of 9.6 GPa and the lowest friction coefficient of 0.68.展开更多
110 nm-thick Au layers were sputter-deposited on unheated glasses coatedabout a 10 nm-thick and a 50 nm-thick Cr layer respectively. The Au/Cr bilayer films were annealedin a vacuum of 1 mPa at 300℃ for 2, 5 and 30 m...110 nm-thick Au layers were sputter-deposited on unheated glasses coatedabout a 10 nm-thick and a 50 nm-thick Cr layer respectively. The Au/Cr bilayer films were annealedin a vacuum of 1 mPa at 300℃ for 2, 5 and 30 min, respectively. Auger electron spectroscopy, X-raydiffraction and Field emission scanning electron microscopy were used to analyze the composition andstructure of the Au layers. The resistivity of the bilayer films was measured by using four-pointprobe technique. The adhesion of the bilayer films to the substrate was tested using tape tests. Theamount of Cr atoms diffusing into the Au layer increases with increasing the annealing time,resulting in a decrease in lattice constant and an increase in resistivity of the Au layer. Thecontent of Cr inside the Au layer grown on the thinner Cr layer is less than that grown on thethicker Cr layer. For the Au/Cr bilayer films, the lower resistivity and the good adhesion to theglass substrate can be obtained at a shorter annealing time for a thinner Cr layer.展开更多
In this paper, graphite-like carbon (GLC) films with Cr buffer layer were fabricated by DC magnetron sputtering technique with the thickness ratio of Cr to GLC films varying from 1:2 to 1:20. The effect of Cr]GLC ...In this paper, graphite-like carbon (GLC) films with Cr buffer layer were fabricated by DC magnetron sputtering technique with the thickness ratio of Cr to GLC films varying from 1:2 to 1:20. The effect of Cr]GLC modulation ratio on microstructure, mechanical and tribological properties in artificial seawater was mainly investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), nano-indenter and a reciprocating sliding tribo-meter. The propagation of defects plays an important role in the evolution of delamination, which is critical to wear failure of GLC films in artificial seawa- ter. Designing the proper multilayer structure could inhibit the defects propagation and thus protect the basis material. The multilayer Cr/GLC film with optimized ratio of 1:3 demonstrates a low average friction coefficient of 0.08 ± 0.006 and wear rate of (2.3 ± 0.3) × 10^-8 mm3/(N m) in artificial seawater, respectively.展开更多
The microstructure and magnetic properties of Co/Cr bilayer films were examined before and after postdeposition annealing by using transmission electron microscopy (TEM), X-ray diffraction (XRD) technique and vibr...The microstructure and magnetic properties of Co/Cr bilayer films were examined before and after postdeposition annealing by using transmission electron microscopy (TEM), X-ray diffraction (XRD) technique and vibrating sample magnetometer (VSM). A model of grain boundary (GB) Cr-rich phase growth involving GB diffusion derived from the Cr underlayer was proposed to elucidate the kinetics of the paramagnetic Cr-rich phase growth along Co GBs within the Co layer. The correlation of the GB Cr-rich phase formation with the magnetic Co grain isolation and accordingly, improvement of magnetic properties was experimentally investigated and discussed in detail. Our analysis results are well consistent with previous micromagnetic simulations on the improvement of magnetic properties by the magnetic grain isolation. The results provide some insights into the processing-structure-property relationships of the Co/Cr bilayer films, and thus suggest that the magnetic grain isolation be feasible not only in longitudinal recording media, but also be effective in tuning the exchange coupling of magnetic grains in perpendicular recording media via the GB diffusion from underlayer and/or overlayer.展开更多
The epitaxial Mno0.98Cr0.02Te films on single crystal Al2O3 (0001) substrates were prepared by pulsed laser deposition. The X-ray diffraction and scanning electron microscopy results showed that the good continuous ...The epitaxial Mno0.98Cr0.02Te films on single crystal Al2O3 (0001) substrates were prepared by pulsed laser deposition. The X-ray diffraction and scanning electron microscopy results showed that the good continuous epitaxial film was obtained with substrate temperature of 500 ℃. When the substrate temperature reached 700 ℃, the film was island growth and the manganese oxides phase appeared. The temperature dependence of both the magnetization and electrical resistance showed a sharp rise at around 60 K due to the magnetoelastic coupling. The temperature dependence of the electrical resistance of Mno0.98Cr0.02Te provided evidence for a transition from the metallic to semiconducting state at 305 K due to the spin disorder scattering with a large contribution from the influence of magnon drag.展开更多
The two Ti-Al-Zr targets and one pure Cr target were used to prepare the TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films on high speed steel (WlSCr4V) substrates by multi-arc ion plating technique. Short-term isothermal...The two Ti-Al-Zr targets and one pure Cr target were used to prepare the TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films on high speed steel (WlSCr4V) substrates by multi-arc ion plating technique. Short-term isothermal (at 600 ℃, 700 ℃, 800℃ and 900 ℃ for 4 h) and long-terra cyclic (at 700℃ and 800℃ for 100 h) high temperature oxidation behavior of the gradient films were studied. Then the oxide scales formed on the film specimens were characterized by scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy (EDS) and X-ray diffraction (XRD). It was showed that, under short-term isothermal condition, the high temperature oxidation resistance of the gradient film was excellent up to 800 ℃ and an oxide scale comprising TiO2 was observed. On the other hand, under long-term cyclic high temDerature condition, the oxidation resistance of the gradient film was excellent at about 700 ℃.展开更多
基金the Major Project of National Natural Science Foundation of China(No.60490290)the National Natural Science Foundation of China(No.60571010)
文摘NdTbCo/Cr amorphous films with high perpendicular magnetic anisotropy were prepared onto glass substrates by rf magnetron sputtering. The effects of Nd substitution on the magnetic and magneto-optical properties of TbCo/Cr films were investigated. It was found that partial Tb substitution by Nd would increase the saturation magnetization and the Kerr rotation angle, change the temperature dependence of magneto-optical characteristics. These results can be explained by the ferrimagnetic structure of the rare earth-transition metal alloy. When the magnetic layer composition was (Nd0.265Tb0.735)31Co69, a saturation magnetization of 247 emu/cm^3 and a coercivity of 3.8 kOe at room temperature could be obtained.
基金financially supported by Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics (No.U1330113)the National Natural Science Foundation of China (No.31300787)the Overseas Famous Teacher Program of Chinese Education Ministry (No. MS2010XNJT070)。
文摘For high-power impulse magnetron sputtering(HIPIMS),the peak power applied to the target is of great importance for regulating the ionization degree of the metal target and ion/atom flux ratio.In this work,chromium(Cr)films were deposited on 316-L stainless steel substrates and silicon(100) wafers with different peak powers by HIPIMS.The relationship between peak target power and properties of Cr films was explored in detail.The resulting structure and mechanical properties of deposited Cr films were characterized by X-ray diffraction(XRD),transmission electron microscope(TEM),atomic force microscopy(AFM),indentation hardness and scratch tester.The results indicate that the ionization degree of metal target and ion/atom flux ratio increase with the increase in peak power but without the loss of deposition rate at the same time.At low ionization degree,the deposited Cr film has low compressive residual stress and low hardness but good adhesion strength.When the ionization degree of target metal increases with increasing peak power,Cr film exhibits finer size and smoother surface with improved hardness but decreased adhesion strength.
文摘The thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films are studied in this paper. Several types of adhesion layers were investigated: 10.0 nm Pt, 1.5 nm Cr + 50.0 nm Pt, 2.5 nm Cr + 50.0 nm Pt and 3.5 nm Cr + 50.0 nm Pt fabricated using direct current magnetron sputtering. The variation of layer thickness, roughness, crystallization and surface topography of Pt/Cr films were analyzed by grazing incidence X-ray reflectometry, large angle X-ray diffraction and optical profiler before and after heating. 2.5 nm Cr + 50.0 nm Pt film exhibits the best thermal stability and separation characteristics according to the heating and hot slumping experiments. The film was also applied as an anti-sticking layer to optimize the maximum temperature of the hot slumping technique.
基金The project supported by National Natural Science Foundation of China (No. 90205001)
文摘With the development of industry, much attention has been paid to lengthening the life span of bearings. As reported in this paper, we investigated the Cr/CrN compound films formed on the specimens of W9Cr4V2Mo bearing steel by ion beam assisted deposition for improving the performance of bearing steels. The Vicker's microhardness, pin-on-disc, electrochemical measurement, XRD and SEM tests were used to characterize and analyze the treated samples. All results indicated that the mechanical properties of the treated samples were good, with the microhardness greater than that of the uncoated specimen, and the wear resistance, the passivity and pitting corrosion resistance increased considerably, the films possessed alternate Cr and CrN compound phases and produced different effects on the improvement of the performance of W9Cr4V2Mo bearing steels with different composing phases.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51302116 and 51365016the Open Fund Item of State Key Laboratory of Solid Lubrication of Lanzhou Institute of Chemical Physics of Chinese Academy of Sciences under Grant No LSL-1203
文摘Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are characterized systematically by field-emission scanning electron microscope, x-ray diffraction, Raman spectra, nanoindentation and scratch. It is shown that optimal Cr metal forms nanocrystalline carbide to improve the hardness, toughness and adhesion strength in the amorphous carbon matrix, which possesses relatively higher nano-hardness of 15. 7 CPa, elastic modulus of 126.8 GPa and best adhesion strength with critical load (Lc) of 36 N for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm. The friction and wear behaviors of as-deposited Cr/a-C:H films are evaluated under both the ambient air and deionized water conditions. The results reveal that it can achieve superior low friction and anti-wear performance for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm under the ambient air condition, and the friction coetllcient and wear rate tested in deionized water condition are relatively lower compared with those tested under the ambient air condition for each film. Superior combination of mechanical and tribological properties for the Cr/a-C:H film should be a good candidate for engineering applications.
基金financial support from National Natural Science Foundation of China(Nos.12075071 and 11875119)Heilongjiang Touyan Innovation Team Program(HITTY-20190013)。
文摘In order to improve the length of plasma in a whole tube and mechanical properties of Cr films deposited on the inner surface of the tube, a high-power impulse magnetron sputtering coating method with a planar cathode target and auxiliary anode was proposed. The auxiliary anode was placed near the tube tail to attract plasma into the inner part of the tube. Cr films were deposited on the inner wall of a 20# carbon steel tube with a diameter of 40 mm and length of 120 mm. The influence of auxiliary anode voltage on the discharge characteristics of the Cr target, and the structure and mechanical properties of Cr films deposited on the inner surface of the tube were explored. With higher auxiliary anode voltage, an increase in substrate current was observed, especially in the tube tail. The thickness uniformity, compactness, hardness and H/E ratios of the Cr films deposited on the inner surface of the tube increased with the increase in auxiliary anode voltage. The Cr films deposited with auxiliary anode voltage of 60 V exhibited the highest hardness of 9.6 GPa and the lowest friction coefficient of 0.68.
文摘110 nm-thick Au layers were sputter-deposited on unheated glasses coatedabout a 10 nm-thick and a 50 nm-thick Cr layer respectively. The Au/Cr bilayer films were annealedin a vacuum of 1 mPa at 300℃ for 2, 5 and 30 min, respectively. Auger electron spectroscopy, X-raydiffraction and Field emission scanning electron microscopy were used to analyze the composition andstructure of the Au layers. The resistivity of the bilayer films was measured by using four-pointprobe technique. The adhesion of the bilayer films to the substrate was tested using tape tests. Theamount of Cr atoms diffusing into the Au layer increases with increasing the annealing time,resulting in a decrease in lattice constant and an increase in resistivity of the Au layer. Thecontent of Cr inside the Au layer grown on the thinner Cr layer is less than that grown on thethicker Cr layer. For the Au/Cr bilayer films, the lower resistivity and the good adhesion to theglass substrate can be obtained at a shorter annealing time for a thinner Cr layer.
基金supported by the National Natural Science Foundation of China(Nos.51522106 and 51375475)Zhejiang Key Research and Development Program(2017C01001)Public Projects of Zhejiang Province
文摘In this paper, graphite-like carbon (GLC) films with Cr buffer layer were fabricated by DC magnetron sputtering technique with the thickness ratio of Cr to GLC films varying from 1:2 to 1:20. The effect of Cr]GLC modulation ratio on microstructure, mechanical and tribological properties in artificial seawater was mainly investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), nano-indenter and a reciprocating sliding tribo-meter. The propagation of defects plays an important role in the evolution of delamination, which is critical to wear failure of GLC films in artificial seawa- ter. Designing the proper multilayer structure could inhibit the defects propagation and thus protect the basis material. The multilayer Cr/GLC film with optimized ratio of 1:3 demonstrates a low average friction coefficient of 0.08 ± 0.006 and wear rate of (2.3 ± 0.3) × 10^-8 mm3/(N m) in artificial seawater, respectively.
基金supported by the National Natural Sci-ence Foundation of China (No 50671020)the Chinese Ministry of Education (Nos 108039 and IRT0713)
文摘The microstructure and magnetic properties of Co/Cr bilayer films were examined before and after postdeposition annealing by using transmission electron microscopy (TEM), X-ray diffraction (XRD) technique and vibrating sample magnetometer (VSM). A model of grain boundary (GB) Cr-rich phase growth involving GB diffusion derived from the Cr underlayer was proposed to elucidate the kinetics of the paramagnetic Cr-rich phase growth along Co GBs within the Co layer. The correlation of the GB Cr-rich phase formation with the magnetic Co grain isolation and accordingly, improvement of magnetic properties was experimentally investigated and discussed in detail. Our analysis results are well consistent with previous micromagnetic simulations on the improvement of magnetic properties by the magnetic grain isolation. The results provide some insights into the processing-structure-property relationships of the Co/Cr bilayer films, and thus suggest that the magnetic grain isolation be feasible not only in longitudinal recording media, but also be effective in tuning the exchange coupling of magnetic grains in perpendicular recording media via the GB diffusion from underlayer and/or overlayer.
基金supported by the National Natural Science Foundation of China(No.50902128)Project of Shenyang Natural Science and Technology Support Program(No.F10205154)Project of Jilin Provincial Natural Science Foundation(No.20101534)
文摘The epitaxial Mno0.98Cr0.02Te films on single crystal Al2O3 (0001) substrates were prepared by pulsed laser deposition. The X-ray diffraction and scanning electron microscopy results showed that the good continuous epitaxial film was obtained with substrate temperature of 500 ℃. When the substrate temperature reached 700 ℃, the film was island growth and the manganese oxides phase appeared. The temperature dependence of both the magnetization and electrical resistance showed a sharp rise at around 60 K due to the magnetoelastic coupling. The temperature dependence of the electrical resistance of Mno0.98Cr0.02Te provided evidence for a transition from the metallic to semiconducting state at 305 K due to the spin disorder scattering with a large contribution from the influence of magnon drag.
基金supported by Program for Liaoning Excellent Talents in University (No.RC-05-05)Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0713)
文摘The two Ti-Al-Zr targets and one pure Cr target were used to prepare the TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films on high speed steel (WlSCr4V) substrates by multi-arc ion plating technique. Short-term isothermal (at 600 ℃, 700 ℃, 800℃ and 900 ℃ for 4 h) and long-terra cyclic (at 700℃ and 800℃ for 100 h) high temperature oxidation behavior of the gradient films were studied. Then the oxide scales formed on the film specimens were characterized by scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy (EDS) and X-ray diffraction (XRD). It was showed that, under short-term isothermal condition, the high temperature oxidation resistance of the gradient film was excellent up to 800 ℃ and an oxide scale comprising TiO2 was observed. On the other hand, under long-term cyclic high temDerature condition, the oxidation resistance of the gradient film was excellent at about 700 ℃.