期刊文献+
共找到133,773篇文章
< 1 2 250 >
每页显示 20 50 100
Oxidation of Fe-Cr-Ni Alloys in a Low Oxygen Partial Pressure Atmosphere to Mitigate Coke Formation
1
作者 Wang Hongxia Wang Guoqing +3 位作者 Zhang Lijun Wang Shenxiang Jia Jingsheng Cui Lishan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期49-59,共11页
Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed ... Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed by energydispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The anti-cokingperformance of a mini tube made of a HP40 (25Cr35Ni) alloy was evaluated on a bench scale pyrolysis and coking test unit.The results showed that the surface Fe and Ni content decreased after the oxidation of the two alloys in a low oxygen partialpressure atmosphere. The oxide films were mainly composed of MnCr_(2)O_(4) and Cr_(2)O_(3). The average mass of coke in the minitube with oxide film decreased by 87% relative to that of a tube without an oxide film when the cracking temperature was 900℃. The ethylene, propylene, and butadiene yields in the pyrolysis tests were almost the same for the mini tubes withand without an oxide film. The oxide film on the alloy surface effectively inhibited catalytic filamentous coke formation.An industrial test showed that the run length of the cracking furnace with the in-situ coating technology was significantlyextended. 展开更多
关键词 Fe-cr-ni alloy low oxygen partial pressure oxide film ANTI-COKING ethylene cracking furnace in-situ coating
下载PDF
Microstructure and grain boundary engineering of a novel Fe-Cr-Ni alloy weldment made with self-developed composition-matched weld filler metal 被引量:2
2
作者 Yu ZHANG Hong-yang JING +5 位作者 Lian-yong XU Yong-dian HAN Lei ZHAO Hai-zhou LI Zheng-xin TANG Tian-wang TONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期992-1004,共13页
The microstructure,texture,and yield strength of an advanced heat-resistant alloy weldment made with composition-matched weld filler were investigated.Scanning electron microscopy,energy dispersive spectroscopy,and el... The microstructure,texture,and yield strength of an advanced heat-resistant alloy weldment made with composition-matched weld filler were investigated.Scanning electron microscopy,energy dispersive spectroscopy,and electron backscatter diffraction were used to characterize the microstructural and textural changes.Various grain boundary engineering(GBE)processes were performed on the weldment.The yield strengths of the weldment at 973 K were obtained before and after GBE processing,and were mostly consistent with the theoretically predicted values.The coincident-site lattices,misorientation,and recrystallization of the weld metal after GBE were analyzed,and the results indicate that the increase in dislocation density and the improvement in special grain boundaries in the weld metal are the main reasons for the yield strength elevation of the weldment after GBE.The variation in elongation after high-temperature tests has the same tendency as that in the impact toughness with different GBE parameters,which is related to the coarsening behavior of carbides. 展开更多
关键词 grain boundary engineering advanced Fe-cr-ni alloy weld metal yield strength
下载PDF
THERMODYNAMIC PROPERTIES OF NITROGEN IN Fe-Cr-Ni ALLOYS AT 1873K 被引量:2
3
作者 Ma, Z.T. Janke, D. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第4期235-240,共6页
The dependence of first interaction parameter (chromium on nitrogen) upon the content of Cr in Fe-Cr-Ni-N melt was expressed. The formalism developed for describing thermodynamics of metallic multicomponent systems w... The dependence of first interaction parameter (chromium on nitrogen) upon the content of Cr in Fe-Cr-Ni-N melt was expressed. The formalism developed for describing thermodynamics of metallic multicomponent systems was applied to the Fe-Cr-Ni-N quaternary system. (Edited author abstract) 17 Refs. 展开更多
关键词 Fe-cr-ni alloy nitropen ACTIVITY
全文增补中
Electron Microscopy Analysis of Deformation Induced ε Martensite Transformation in an Fe-Mn-Si-Cr-Ni Alloy
4
作者 Fuxing YIN Jianxin ZHANG Ruixiang WANG and Nanju GU (Hebei Institute of Technology, Tianjin, 300132, China)(To whom correspondence should be addressed)Kenichi Shimizu (Kanazawa Institute of Technology, Ishikawa, Japan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第4期263-268,共6页
The configurations of stacking faults and morphologies of strain induced ε martensite plates in an FeMnSiCrNi alloy were investigated through electron microscopy analysis. The Shockley partial dislocation structures.... The configurations of stacking faults and morphologies of strain induced ε martensite plates in an FeMnSiCrNi alloy were investigated through electron microscopy analysis. The Shockley partial dislocation structures. sensitive to external stress. determine the configurations of stacking faults in γphase Partial dislocations at the front sides of stacking faults are usetul for the nucleation of εmartensite plates. The growth of ε martensite plates is accompanied with the disappearance of local pre-existing stacking faults, The ε martensite vanants behave in three morphologies of respective stopping. continuous penetrating and intersections with the formation of secondary ε martensite plates 展开更多
关键词 MN Electron Microscopy Analysis of Deformation Induced Martensite Transformation in an Fe-Mn-Si-cr-ni alloy Fe Si Cr Ni
下载PDF
Enthalpy of Mixing of Liquid Al-Cr and Cr-Ni Alloys 被引量:1
5
作者 P.Saltykov V.T.Witusiewicz 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期167-170,共4页
The partial and the integral enthalpies of mixing of liquid Al-Cr and Ni-Cr binary alloys have been determined by high temperature isoperibolic calorimetry at 1723±5 K and 1729±5 K, respectively. The results... The partial and the integral enthalpies of mixing of liquid Al-Cr and Ni-Cr binary alloys have been determined by high temperature isoperibolic calorimetry at 1723±5 K and 1729±5 K, respectively. The results were analytically described by the thermodynamically adapted power series (TAPS). The enthalpies of mixing values for both binary liquid melts are small and negative and in good agreement with the available literature data. Minima of the mixing enthalpies of liquid Al-Cr and Ni-Cr alloys are -7.0 kJ·mol-1 at 46 at. pct Cr and -3.0 kJ·mol-1 at 37 at. pct Cr, respectively. 展开更多
关键词 AL-CR cr-ni Liquid alloys Enthalpy of mixing Isoperibolic calorimetry
下载PDF
Electrochemical Isolation and Determination of GCP Phase in a Fe-Cr-Ni Alloy
6
作者 Ma Xiang, Lu CuifenCentral Iron and Steel Research Institute, MMI,Beijing (100081), China 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1997年第2期52-56,共5页
Geometrical Close Packed (GCP) phase in Fe Cr Ni alloy was quantitatively isolated and precisely determined when electrolyzed in 10 % H 3PO 4 electrolyte at a low current density of 5 mA/cm 2 and 22 ℃±1 ℃... Geometrical Close Packed (GCP) phase in Fe Cr Ni alloy was quantitatively isolated and precisely determined when electrolyzed in 10 % H 3PO 4 electrolyte at a low current density of 5 mA/cm 2 and 22 ℃±1 ℃. The transpassive dissolution potential of the alloy matrix under above conditions is about 1 140 mV (SCE), at which GCP phase is in passive state and can be isolated from the alloy.[WT5”HZ〗 展开更多
关键词 phase analysis electrochemical separation anodic isolation GCP phase Fe Cr Ni alloy
下载PDF
热处理对等离子熔覆Fe-Mo-Cr-Ni-B合金覆层组织及耐磨性能的影响
7
作者 柯德庆 汪威 +2 位作者 吕正奇 潘应君 常智敏 《武汉科技大学学报》 CAS 北大核心 2024年第2期93-100,共8页
采用等离子熔覆技术在H13合金钢表面熔覆Fe-Mo-Cr-Ni-B合金,利用光学显微镜(OM)、扫描电子显微镜(SEM)配合能谱仪(EDS)、X射线衍射仪(XRD)、显微硬度计以及多功能摩擦磨损试验机,对热处理前后熔覆层的组织结构、硬度和耐磨性进行分析。... 采用等离子熔覆技术在H13合金钢表面熔覆Fe-Mo-Cr-Ni-B合金,利用光学显微镜(OM)、扫描电子显微镜(SEM)配合能谱仪(EDS)、X射线衍射仪(XRD)、显微硬度计以及多功能摩擦磨损试验机,对热处理前后熔覆层的组织结构、硬度和耐磨性进行分析。结果表明,Fe-Mo-Cr-Ni-B合金覆层主要由α-Fe、Mo_(2)FeB_(2)、(Mo,Fe,Cr)_(3)B_(2)和Fe_(23)(B,C)_(6)相组成;熔覆层磨损以Mo_(2)FeB_(2)硬质相的脆性剥落为主;在1000℃温度热处理后,熔覆层平均硬度达到1061HV_(0.5),相比于焊态提高了28.3%,耐磨性相比于焊态提升了42.0%。合金覆层硬度提升和耐磨性的改善可以归因于高温热处理导致的碳化物共晶组织消失、Mo_(2)FeB_(2)硬质相增多以及黏结相强度增加。 展开更多
关键词 等离子熔覆 H13合金钢 Mo_(2)FeB_(2) 热处理 显微组织 硬度 摩擦磨损
下载PDF
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization 被引量:2
8
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys HIGH-PERFORMANCE alloy design Machine learning Bayesian optimization
下载PDF
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:2
9
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
10
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:2
11
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Influence of heat treatment on microstructure,mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion 被引量:5
12
作者 Chenrong Ling Qiang Li +6 位作者 Zhe Zhang Youwen Yang Wenhao Zhou Wenlong Chen Zhi Dong Chunrong Pan Cijun Shuai 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期258-275,共18页
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe... Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility. 展开更多
关键词 laser-beam powder bed fusion WE43 alloys heat treatment mechanical performance biodegradation behavior
下载PDF
An ionic liquid-assisted strategy for enhanced anticorrosion of low-energy PEO coatings on magnesium–lithium alloy 被引量:2
13
作者 You Zhang Chuping Chen +3 位作者 Haoyue Tian Shuqi Wang Chen Wen Fei Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2380-2396,共17页
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab... A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance. 展开更多
关键词 Magnesium-lithium alloy Plasma electrolytic oxidation Low energy Ionic liquid Corrosion resistance
下载PDF
Revealing the role of pyramidal slip in the high ductility of Mg-Li alloy 被引量:1
14
作者 Jing Xu Bo Guan +3 位作者 Yunchang Xin Guangjie Huang Peidong Wu Qing Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1021-1025,共5页
The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can... The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can only slightly stimulate the activation of pyramidal<c+a>slip under compression along the normal direction of a hot-rolled Mg-4.5 wt.%Li plate,with a relative activity of approximately 18%.Although the limited activity of pyramidal<c+a>slip alone cannot accommodate a large plastic strain,it effectively reduces the number of{10.11}−{10.12}double twins,which are believed to be favorable sites for crack initiation.The evidently reduced activity of double twins leads to a lower cracking tendency,and therefore improves ductility. 展开更多
关键词 Mg alloy Plasticity Plastic deformation SLIP Twinning.
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:2
15
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications 被引量:1
16
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Influence of layer thickness on formation quality,microstructure,mechanical properties,and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion 被引量:2
17
作者 Bangzhao Yin Jinge Liu +7 位作者 Bo Peng Mengran Zhou Bingchuan Liu Xiaolin Ma Caimei Wang Peng Wen Yun Tian Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1367-1385,共19页
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not... Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases. 展开更多
关键词 Magnesium alloy WE43 Laser powder bed fusion Layer thickness Process optimization
下载PDF
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:1
18
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Effect of icosahedral phase formation on the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li(in wt.%)based alloys 被引量:1
19
作者 Shuo Wang Daokui Xu +2 位作者 Dongliang Wang Zhiqiang Zhang Baojie Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期225-236,共12页
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa... Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism. 展开更多
关键词 Magnesium-lithium alloy Stress corrosion cracking I-phase Fracture analysis
下载PDF
Alloy design for laser powder bed fusion additive manufacturing:a critical review 被引量:1
20
作者 Zhuangzhuang Liu Qihang Zhou +4 位作者 Xiaokang Liang Xiebin Wang Guichuan Li Kim Vanmeensel Jianxin Xie 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期29-63,共35页
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi... Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work. 展开更多
关键词 laser powder bed fusion alloy design PRINTABILITY crack mitigation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部