Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study dea...Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study deals with the preparation of a protective coating for these materials.This coating,based on graphite,was prepared by the slurry method.The effect of graphite and phenolic resin powders with different weight ratios was examined.The results have shown that the coating slurry can fill the pores and cracks of the composite surface,thereby densifying the surface layer of the material.With the increase of the graphite powder/phenolic resin weight ratio,the coating density is enhanced while the coating surface flatness decreases;moreover,the protective ability of coating against erosion first increases(from 1:3 to 2:2)and then decreases(from 2:2 to 3:1).When the weight ratio is about 1:1,the coating for 2D C/C composites exhibits the best erosion resistance,which greatly aids these materials during gas quenching.In this case,the erosion rate is decreased by approximately 41.5%at the impact angle of 30°and 52.3%at normal impact,respectively.This can be attributed to the ability of the coating slurry to infiltrate into the substrate,thereby bonding the fibers together and increasing the compactness of the 2D C/C composites.展开更多
To protect carbon materials from oxidation,SiC coatings were prepared on carbon/carbon(C/C)composites and graphite by chemical vapor reaction.SEM and XRD analyses show that the coatings obtained are composed of SiC gr...To protect carbon materials from oxidation,SiC coatings were prepared on carbon/carbon(C/C)composites and graphite by chemical vapor reaction.SEM and XRD analyses show that the coatings obtained are composed of SiC grains and micro-crystals. The influence of different carbon substrates on oxidation behavior of coated samples was investigated,and then their oxidation mechanisms were studied.Oxidation test shows that the SiC coated graphite has a better oxidation resistance than SiC coated C/C composites at high temperatures(1 623 K and 1 823 K).In the oxidation process,the oxidation curves of SiC coated C/C composites are linear,while those of SiC coated graphite follow a quasi-parabolic manner.The oxidation mechanism of the former is controlled by chemical reaction while the latter is controlled by oxygen diffusion based on the experimental results.The variation of oxidation behavior and mechanism of SiC coatings on two kinds of carbon substrates are primarily contributed to their structure differences.展开更多
Graphite, as a strategic mineral resource, the recycling from spent lithium-ion batteries(LIBs) has attracted considerable attention for meeting considerable economic value. However, closed-circuit recycling still suf...Graphite, as a strategic mineral resource, the recycling from spent lithium-ion batteries(LIBs) has attracted considerable attention for meeting considerable economic value. However, closed-circuit recycling still suffers from the lack of effective repair methods. Considering the existing defects, a series of Cchain length carbons have been successfully introduced to repair spent graphite. Obviously, with the evolution of carbon resources, the thickness and pores of the coating layer were tailored with the functional groups. Benefitting from the increased active sites and created fold structure, their coulombic efficiency is obviously restored from 14% to 86.89%, while the stable capacity is kept at approximately 384.9 mAh gafter 100 cycles. Moreover, their excellent rate properties are kept about approximately 200 mAh gat2 C, meeting the standard of commercial materials. Supported by the detailed kinetic behaviors, the enhanced rate is mainly dominated by pseudocapacitive behaviors, accompanied by deepening redox reactions. Meanwhile, the cost of the proposed approach for recycling spent graphite is 894.87 $ t^(-1),and the recycling profit for regenerating graphite is approximately 7000 $ t^(-1). Given this, this work is anticipated to shed light on the closed-circuit recycling of spent graphite and offer significant strategies to repair graphite.展开更多
The process of electrodepositing Fe-Cr2O3 composite coating on polyacrylonitrile (PAN)-based carbon fibers and its catalytic graphitization were studied. Carbon fibers with and without electrodeposited Fe-Cr2O3 comp...The process of electrodepositing Fe-Cr2O3 composite coating on polyacrylonitrile (PAN)-based carbon fibers and its catalytic graphitization were studied. Carbon fibers with and without electrodeposited Fe-Cr2O3 composite coating were heat treated at different temperatures and the structural changes were characterized by XRD, Raman spectroscopy and SEM. The results indicate that Fe-Cr2O3 composite coating exhibits a significant catalytic effect on graphitization of carbon fibers at low temperatures. When the Fe-Cr2O3-coated carbon fibers were heat treated at 1 300℃ the interlayer spacing (doo2) and ratio of relative peak area (AD/AG) reach 3.364/k and 0.34, respectively. Whereas, the extent of graphitization of pristine carbon fibers is comparatively low even after heat treatment at 2 800℃ and the values of doo2 and AD/AG are 3.414 A and 0.68, respectively. The extent of graphitization of carbon fibers increases not only with the increase of the catalyst gross but also the Cr2O3 content in Fe-Cr2O3 coating. The catalytic effect of Fe-Cr2O3 composite coating accords with the dissolution-precipitation mechanism.展开更多
Ir coatings were deposited on the heat-treated C/C composites and graphite by double glow plasma. Microstructure and morphology of the coating and substrate were observed by SEM and TEM. The effect of the surface trea...Ir coatings were deposited on the heat-treated C/C composites and graphite by double glow plasma. Microstructure and morphology of the coating and substrate were observed by SEM and TEM. The effect of the surface treatment for the carbon structural materials on the microstructure of the coating was investigated. Many large gaps and pores appeared on the surface of the substrates after heat treatment. The Ir coating did not fully covered on the surface of heat-treated C/C composite and graphite substrates because of the large gaps and pores on the surface of substrates. The Ir coating exhibited excellent ablation resistance at super-high temperature. After super-high temperature ablation, the coating kept the integrity, but the coating was weekly bonded to the substrates. Some microcracks and micropores appeared on the surface of as-ablated coating. The Ir coating would need thick enough to cover and fill the large microgaps and micropores on the surface of the heat-treated C/C and graphite substrates.展开更多
Prussian blue(PB) was used as catalyst to improve the extent of graphitization of polyacrylonitrile(PAN)-based carbon fibers.PB was deposited on carbon fibers by anodic electrodeposition and the thickness of PB coatin...Prussian blue(PB) was used as catalyst to improve the extent of graphitization of polyacrylonitrile(PAN)-based carbon fibers.PB was deposited on carbon fibers by anodic electrodeposition and the thickness of PB coating(PB content) was controlled by adjusting the electrodeposition time.PAN-based carbon fibers with PB coating were heat-treated and the extent of graphitization was measured by X-ray diffractometry and Raman spectroscopy.The results indicate that the extent of graphitization of PAN-based carbon fibers is enhanced in the presence of the coating.When the PB-coated carbon fibers were heat-treated at 1 900 ℃,interlayer spacing(d002) and crystallite size(Lc) reach 0.336 8 and 21.2 nm respectively.Contrarily,the values of d002 and Lc are 0.341 4 and 7.4 nm respectively when the bare carbon fibers were heat-treated at 2 800 ℃.Compared with the bare carbon fibers,PB can make the heat treatment temperature(HTT) drop more than 500 ℃ in order to reach the same extent of graphitization.Furthermore,the research results show that PB content also has a certain influence on the extent of graphitization at the same HTT.展开更多
In the present paper, coating systems consisting of a metallic corrosion barrier and a conductive graphitic carbon layer were deposited by a DC vacuum arc process. The coatings were developed in a batch process for ap...In the present paper, coating systems consisting of a metallic corrosion barrier and a conductive graphitic carbon layer were deposited by a DC vacuum arc process. The coatings were developed in a batch process for application in the polymer electrolyte membrane fuel cell (PEMFC), and transferred to a continuous coil process to facilitate industrial mass production. The coating samples in the coil process had to achieve comparable results to the samples produced in the batch process, to meet the requirements of the environment prevailing in the fuel cell.The transfer to roll-to-roll processes is a crucial factor for commercial upscaling of PEMFC production. The experimental results showed that the electrical conductivity and corrosion resistance of the samples in the coil process were significantly improved compared to the uncoated base material and showed comparable performance to batch coated samples. X-ray photoelectron spectroscopy (XPS) was performed to determine the depth profile and the surface composition. Additional measurements were recorded for the contact resistances using the four-wire sensing method as well as corrosion resistance using potentiodynamic methods.展开更多
Potassium-ion batteries(PIBs) have attracted tremendous attention for large-scale energy storage fields based on abundant potassium resources. Graphite is a promising anode material for PIBs due to its low potassium i...Potassium-ion batteries(PIBs) have attracted tremendous attention for large-scale energy storage fields based on abundant potassium resources. Graphite is a promising anode material for PIBs due to its low potassium ion intercalation voltage and mature industrialized preparation technology. However, the inability of graphitic structures to endure large volume change during charge/discharge cycles is a major limitation in their advancement for practical PIBs. Herein, a soft carbon-coated bulk graphite composite is synthesized using PTCDA as a carbon precursor. The PTCDA-derived soft carbon coating layer with large interlayer distance facilities fast potassium ion intercalation/extraction in the BG@C composite and buffers severe volume change during the charge/discharge cycles. When tested as anode for PIBs, the composite realizes enhanced rate capability(131.3 mAh/g at 2 C, 1 C=279 m A/g) and cycling performance(capacity retention of 76.1% after 150 cycles at 0.5 C). In general, the surface modification route to engineer graphite anode could inherently improve the electrochemical performance without any structural alteration.展开更多
To improve the rate capability and cyclability of natural graphite anode for Li-ion batteries,a novel modification approach was developed.The modification approach included two steps:(a)high-energy ball milling in a r...To improve the rate capability and cyclability of natural graphite anode for Li-ion batteries,a novel modification approach was developed.The modification approach included two steps:(a)high-energy ball milling in a rotary autoclave containing alumina balls,H_3PO_4 and ethanol;(b)coating with pyrolytic carbon from phenlic resin.The treated graphite shows obvious improvement compared with the original natural graphite in electrochemical properties such as cyclability and rate capability,especially at high current density.The primary reasons leading to the improvement in rate capability and cyclability are that the diffusion impedance of Li^+ in graphite is reduced due to the fact that P filtered into graphite layers can mildly increase interlayer distances,and the fact that the structural stability of graphite surface is enhanced since the coated pyrolytic carbon can depress the co-intercalation of solvated lithium ion.展开更多
Titanium carbide ( TiC ) coated graphite flakes (GF) and carbon black (CB) powders were prepared at relatively low temperatures ( 750 - 950 ℃ ) using a no- vel molten salt synthesis technique. The in-situ for...Titanium carbide ( TiC ) coated graphite flakes (GF) and carbon black (CB) powders were prepared at relatively low temperatures ( 750 - 950 ℃ ) using a no- vel molten salt synthesis technique. The in-situ formed TiC coatings were homogeneous and crack-free and their thicknesses could be readily controlled/tailored by simply adjusting the Ti/C ratio. Compared to their uncoated counterparts, as prepared TiC coated GF and CB showed much improved water-wettability/dispersivity and rheological properties, and thus could be potentially used to prepare carbon-containing refractory castables.展开更多
Silicon/graphite(Si/Gr)nanocomposites with controlled void spaces and encapsulated by a carbon shell(Si/Gr@void@C)are synthesized by utilizing high-energy ball milling to reduce micron-sized particles to nanoscale,fol...Silicon/graphite(Si/Gr)nanocomposites with controlled void spaces and encapsulated by a carbon shell(Si/Gr@void@C)are synthesized by utilizing high-energy ball milling to reduce micron-sized particles to nanoscale,followed by carbonization of polydopamine(PODA)to form a carbon shell,and finally partial etching of the nanostructured Si core by NaOH solution at elevated temperatures.In particular,the effects of ball milling time and NaOH etching temperature on the electrochemical properties of Si/Gr@void@C are investigated.Increasing the ball milling time results in the improved specific capacity of Si-based anodes.Carbon coating further enhances the specific capacity and capacity retention over charge/discharge cycles.The best cycle stability is achieved after partial etching of the Si core inside Si/Gr@void@C particles at either 70 or 80C,leading to little or no capacity decay over 130 cycles.However,it is found that both carbon coating and NaOH etching processes cause some surface oxidation of the nanostructured Si particles derived from high-energy ball milling.The surface oxidation of the nanostructured Si results in decreases in specific capacity and should be minimized in future studies.The mechanistic understanding developed in this study paves the way to further improve the electrochemical performance of Si/Gr@void@C nanocomposites in future.展开更多
A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graph...A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graphite-like carbon coating were studied. The results showed that when the sample prepared with a 0.01-A current on the silver target was placed in an atmospheric environment for 0.5 h, an apparent silver escape phenomenon could be observed. However, the silver escape phenomenon was not observed for samples prepared with a 0.05-A current on the silver target if the sample was retained in a 10^(-1) Pa vacuum environment, even after 48 h. Compared with the sample placed in the atmospheric environment immediately after an ion plating process, the silver escape time lagged for 6 h. Nanometer-thick pure carbon coating coverage could effectively suppress silver escape. When the coating thickness reached700 nm, permanent retention of silver could be achieved in the silver-doped graphite-like carbon coating.As the silver residue content in the graphite-like carbon coating increased from 2.27 at.% to 5.35 at.%, the interfacial contact resistance of the coating decreased from 51mΩcm^2 to 6 mΩcm^2.展开更多
This research investigates a capacitive deionization method for salinity reduction in a batch reactor as a new approach for desalination.Reductions of cost and energy compared with conventional desalination methods ar...This research investigates a capacitive deionization method for salinity reduction in a batch reactor as a new approach for desalination.Reductions of cost and energy compared with conventional desalination methods are the significant advantages of this approach.In this research,experiments were performed with a pair of graphite bipolar electrodes that were coated with a one-gram activated carbon solution.After completing preliminary tests,the impacts of four parameters on electrical conductivity reduction,including(1)the initial concentration of feed solution,(2)the duration of the tests,(3)the applied voltage,and(4)the pH of the solution,were examined.The results show that the maximum efficiency of electrical conductivity reduction in this laboratory-scale reactor is about 55%.Furthermore,the effects of the initial concentration of feed solution are more significant than the other parameters.Thus,using the capacitive deionization method for water desalination with low and moderate salt concentrations(i.e.,brackish water)is proposed as an affordable method.Compared with conventional desalination methods,capacitive deionization is not only more efficient but also potentially more environmentally friendly.展开更多
Carbon/carbon (C/C) composites were deposited with graphite-like carbon (GLC) coating, and then, Arg-Gly- Asp acid (RGD) peptides were successfully immobilized onto the functionalized GLC coating. GLC coating wa...Carbon/carbon (C/C) composites were deposited with graphite-like carbon (GLC) coating, and then, Arg-Gly- Asp acid (RGD) peptides were successfully immobilized onto the functionalized GLC coating. GLC coating was utilized to prevent carbon particles releasing and create a uniform surface condition for C/C composites. RGD peptides were utilized to improve biocompatibility of GLC coating. Surface chemical characterizations of functionalized GLC coating were detected by contact angle measurement, X-ray photoelectron spectroscopy and Raman spectra. Optical morphology of GLC coatings was observed by confocal laser scanning microscopy. In vitro biological performance was determined using samples seeded with MC3T3-E1 osteoblast-like cells and cultured for 1 week. Surface characterizations and morphological analysis indicated that C/C composites were covered by a dense and uniform GLC coating. Contact angle of GLC coating was reduced to 27.2° when it was functionalized by H202 oxidation at 40 ℃ for 1 h. In vitro cytological test showed that the RGD peptides immobilized GLC coating had a significant improvement in biocompatibility. It was suggested that RGD peptides provided GLC coating with a bioactive surface to improve cell adhesion and proliferation on C/C composites.展开更多
基金This paper has obtained the support of the National Natural Science Foundation of China(No.51902039)High-Level Talents Innovation Support Plan of Dalian(No.2020RQ127)Scientific Research Project of Liaoning Provincial Department Education(No.LJKZ0722)。
文摘Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study deals with the preparation of a protective coating for these materials.This coating,based on graphite,was prepared by the slurry method.The effect of graphite and phenolic resin powders with different weight ratios was examined.The results have shown that the coating slurry can fill the pores and cracks of the composite surface,thereby densifying the surface layer of the material.With the increase of the graphite powder/phenolic resin weight ratio,the coating density is enhanced while the coating surface flatness decreases;moreover,the protective ability of coating against erosion first increases(from 1:3 to 2:2)and then decreases(from 2:2 to 3:1).When the weight ratio is about 1:1,the coating for 2D C/C composites exhibits the best erosion resistance,which greatly aids these materials during gas quenching.In this case,the erosion rate is decreased by approximately 41.5%at the impact angle of 30°and 52.3%at normal impact,respectively.This can be attributed to the ability of the coating slurry to infiltrate into the substrate,thereby bonding the fibers together and increasing the compactness of the 2D C/C composites.
基金Project(2006CB600901)supported by the National Basic Research Program of ChinaProjects(50772134,50802115)supported by the National Natural Science Foundation of China
文摘To protect carbon materials from oxidation,SiC coatings were prepared on carbon/carbon(C/C)composites and graphite by chemical vapor reaction.SEM and XRD analyses show that the coatings obtained are composed of SiC grains and micro-crystals. The influence of different carbon substrates on oxidation behavior of coated samples was investigated,and then their oxidation mechanisms were studied.Oxidation test shows that the SiC coated graphite has a better oxidation resistance than SiC coated C/C composites at high temperatures(1 623 K and 1 823 K).In the oxidation process,the oxidation curves of SiC coated C/C composites are linear,while those of SiC coated graphite follow a quasi-parabolic manner.The oxidation mechanism of the former is controlled by chemical reaction while the latter is controlled by oxygen diffusion based on the experimental results.The variation of oxidation behavior and mechanism of SiC coatings on two kinds of carbon substrates are primarily contributed to their structure differences.
基金financially supported by the National Key Research and Development Program(2019YFC1907801,2019YFC1907804)the National Natural Science Foundation of China(51904340)the Natural Science Foundation of Hunan(2020JJ4733,2021JJ20066)。
文摘Graphite, as a strategic mineral resource, the recycling from spent lithium-ion batteries(LIBs) has attracted considerable attention for meeting considerable economic value. However, closed-circuit recycling still suffers from the lack of effective repair methods. Considering the existing defects, a series of Cchain length carbons have been successfully introduced to repair spent graphite. Obviously, with the evolution of carbon resources, the thickness and pores of the coating layer were tailored with the functional groups. Benefitting from the increased active sites and created fold structure, their coulombic efficiency is obviously restored from 14% to 86.89%, while the stable capacity is kept at approximately 384.9 mAh gafter 100 cycles. Moreover, their excellent rate properties are kept about approximately 200 mAh gat2 C, meeting the standard of commercial materials. Supported by the detailed kinetic behaviors, the enhanced rate is mainly dominated by pseudocapacitive behaviors, accompanied by deepening redox reactions. Meanwhile, the cost of the proposed approach for recycling spent graphite is 894.87 $ t^(-1),and the recycling profit for regenerating graphite is approximately 7000 $ t^(-1). Given this, this work is anticipated to shed light on the closed-circuit recycling of spent graphite and offer significant strategies to repair graphite.
基金Project(2006CB600903) supported by the National Basic Research Program of China
文摘The process of electrodepositing Fe-Cr2O3 composite coating on polyacrylonitrile (PAN)-based carbon fibers and its catalytic graphitization were studied. Carbon fibers with and without electrodeposited Fe-Cr2O3 composite coating were heat treated at different temperatures and the structural changes were characterized by XRD, Raman spectroscopy and SEM. The results indicate that Fe-Cr2O3 composite coating exhibits a significant catalytic effect on graphitization of carbon fibers at low temperatures. When the Fe-Cr2O3-coated carbon fibers were heat treated at 1 300℃ the interlayer spacing (doo2) and ratio of relative peak area (AD/AG) reach 3.364/k and 0.34, respectively. Whereas, the extent of graphitization of pristine carbon fibers is comparatively low even after heat treatment at 2 800℃ and the values of doo2 and AD/AG are 3.414 A and 0.68, respectively. The extent of graphitization of carbon fibers increases not only with the increase of the catalyst gross but also the Cr2O3 content in Fe-Cr2O3 coating. The catalytic effect of Fe-Cr2O3 composite coating accords with the dissolution-precipitation mechanism.
基金Funded by the National Natural Science Foundation of China (50872055/ E020703)the Funding for Outstanding Doctoral Dissertation in NUAA (BCXJ11-09)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Jiangsu Innovation Program for Graduate Education(CXLX11_0207)
文摘Ir coatings were deposited on the heat-treated C/C composites and graphite by double glow plasma. Microstructure and morphology of the coating and substrate were observed by SEM and TEM. The effect of the surface treatment for the carbon structural materials on the microstructure of the coating was investigated. Many large gaps and pores appeared on the surface of the substrates after heat treatment. The Ir coating did not fully covered on the surface of heat-treated C/C composite and graphite substrates because of the large gaps and pores on the surface of substrates. The Ir coating exhibited excellent ablation resistance at super-high temperature. After super-high temperature ablation, the coating kept the integrity, but the coating was weekly bonded to the substrates. Some microcracks and micropores appeared on the surface of as-ablated coating. The Ir coating would need thick enough to cover and fill the large microgaps and micropores on the surface of the heat-treated C/C and graphite substrates.
基金Project(2006CB600903) supported by the National Basic Research Program of China
文摘Prussian blue(PB) was used as catalyst to improve the extent of graphitization of polyacrylonitrile(PAN)-based carbon fibers.PB was deposited on carbon fibers by anodic electrodeposition and the thickness of PB coating(PB content) was controlled by adjusting the electrodeposition time.PAN-based carbon fibers with PB coating were heat-treated and the extent of graphitization was measured by X-ray diffractometry and Raman spectroscopy.The results indicate that the extent of graphitization of PAN-based carbon fibers is enhanced in the presence of the coating.When the PB-coated carbon fibers were heat-treated at 1 900 ℃,interlayer spacing(d002) and crystallite size(Lc) reach 0.336 8 and 21.2 nm respectively.Contrarily,the values of d002 and Lc are 0.341 4 and 7.4 nm respectively when the bare carbon fibers were heat-treated at 2 800 ℃.Compared with the bare carbon fibers,PB can make the heat treatment temperature(HTT) drop more than 500 ℃ in order to reach the same extent of graphitization.Furthermore,the research results show that PB content also has a certain influence on the extent of graphitization at the same HTT.
文摘In the present paper, coating systems consisting of a metallic corrosion barrier and a conductive graphitic carbon layer were deposited by a DC vacuum arc process. The coatings were developed in a batch process for application in the polymer electrolyte membrane fuel cell (PEMFC), and transferred to a continuous coil process to facilitate industrial mass production. The coating samples in the coil process had to achieve comparable results to the samples produced in the batch process, to meet the requirements of the environment prevailing in the fuel cell.The transfer to roll-to-roll processes is a crucial factor for commercial upscaling of PEMFC production. The experimental results showed that the electrical conductivity and corrosion resistance of the samples in the coil process were significantly improved compared to the uncoated base material and showed comparable performance to batch coated samples. X-ray photoelectron spectroscopy (XPS) was performed to determine the depth profile and the surface composition. Additional measurements were recorded for the contact resistances using the four-wire sensing method as well as corrosion resistance using potentiodynamic methods.
基金financially supported by the National Natural Science Foundation of China(NSFC,Nos.52072021,22005023)the Fundamental Research Funds for the Central Universities(No.buctrc202141)。
文摘Potassium-ion batteries(PIBs) have attracted tremendous attention for large-scale energy storage fields based on abundant potassium resources. Graphite is a promising anode material for PIBs due to its low potassium ion intercalation voltage and mature industrialized preparation technology. However, the inability of graphitic structures to endure large volume change during charge/discharge cycles is a major limitation in their advancement for practical PIBs. Herein, a soft carbon-coated bulk graphite composite is synthesized using PTCDA as a carbon precursor. The PTCDA-derived soft carbon coating layer with large interlayer distance facilities fast potassium ion intercalation/extraction in the BG@C composite and buffers severe volume change during the charge/discharge cycles. When tested as anode for PIBs, the composite realizes enhanced rate capability(131.3 mAh/g at 2 C, 1 C=279 m A/g) and cycling performance(capacity retention of 76.1% after 150 cycles at 0.5 C). In general, the surface modification route to engineer graphite anode could inherently improve the electrochemical performance without any structural alteration.
文摘To improve the rate capability and cyclability of natural graphite anode for Li-ion batteries,a novel modification approach was developed.The modification approach included two steps:(a)high-energy ball milling in a rotary autoclave containing alumina balls,H_3PO_4 and ethanol;(b)coating with pyrolytic carbon from phenlic resin.The treated graphite shows obvious improvement compared with the original natural graphite in electrochemical properties such as cyclability and rate capability,especially at high current density.The primary reasons leading to the improvement in rate capability and cyclability are that the diffusion impedance of Li^+ in graphite is reduced due to the fact that P filtered into graphite layers can mildly increase interlayer distances,and the fact that the structural stability of graphite surface is enhanced since the coated pyrolytic carbon can depress the co-intercalation of solvated lithium ion.
文摘Titanium carbide ( TiC ) coated graphite flakes (GF) and carbon black (CB) powders were prepared at relatively low temperatures ( 750 - 950 ℃ ) using a no- vel molten salt synthesis technique. The in-situ formed TiC coatings were homogeneous and crack-free and their thicknesses could be readily controlled/tailored by simply adjusting the Ti/C ratio. Compared to their uncoated counterparts, as prepared TiC coated GF and CB showed much improved water-wettability/dispersivity and rheological properties, and thus could be potentially used to prepare carbon-containing refractory castables.
基金MA and LS are grateful to the Rowe Family Endowment Fund,and QH acknowledges Tang Fellowship.The financial support from the U.S.National Science Foundation(NSF)with the award number CMMI-1660572 is acknowledged.Further,the discussion of TEM images with Dr.Satyanarayana Emani is appreciated.The use of the Center for Nanoscale Materials,an Office of Science user facility,was supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,under Contract No.DE-AC02-06CH11357.
文摘Silicon/graphite(Si/Gr)nanocomposites with controlled void spaces and encapsulated by a carbon shell(Si/Gr@void@C)are synthesized by utilizing high-energy ball milling to reduce micron-sized particles to nanoscale,followed by carbonization of polydopamine(PODA)to form a carbon shell,and finally partial etching of the nanostructured Si core by NaOH solution at elevated temperatures.In particular,the effects of ball milling time and NaOH etching temperature on the electrochemical properties of Si/Gr@void@C are investigated.Increasing the ball milling time results in the improved specific capacity of Si-based anodes.Carbon coating further enhances the specific capacity and capacity retention over charge/discharge cycles.The best cycle stability is achieved after partial etching of the Si core inside Si/Gr@void@C particles at either 70 or 80C,leading to little or no capacity decay over 130 cycles.However,it is found that both carbon coating and NaOH etching processes cause some surface oxidation of the nanostructured Si particles derived from high-energy ball milling.The surface oxidation of the nanostructured Si results in decreases in specific capacity and should be minimized in future studies.The mechanistic understanding developed in this study paves the way to further improve the electrochemical performance of Si/Gr@void@C nanocomposites in future.
基金financial support of the project from the National Natural Science Foundation of China (Nos. 51571114 and 51401106)the Natural Science Foundation of Jiangsu Province (No. BK20130935)
文摘A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graphite-like carbon coating were studied. The results showed that when the sample prepared with a 0.01-A current on the silver target was placed in an atmospheric environment for 0.5 h, an apparent silver escape phenomenon could be observed. However, the silver escape phenomenon was not observed for samples prepared with a 0.05-A current on the silver target if the sample was retained in a 10^(-1) Pa vacuum environment, even after 48 h. Compared with the sample placed in the atmospheric environment immediately after an ion plating process, the silver escape time lagged for 6 h. Nanometer-thick pure carbon coating coverage could effectively suppress silver escape. When the coating thickness reached700 nm, permanent retention of silver could be achieved in the silver-doped graphite-like carbon coating.As the silver residue content in the graphite-like carbon coating increased from 2.27 at.% to 5.35 at.%, the interfacial contact resistance of the coating decreased from 51mΩcm^2 to 6 mΩcm^2.
文摘This research investigates a capacitive deionization method for salinity reduction in a batch reactor as a new approach for desalination.Reductions of cost and energy compared with conventional desalination methods are the significant advantages of this approach.In this research,experiments were performed with a pair of graphite bipolar electrodes that were coated with a one-gram activated carbon solution.After completing preliminary tests,the impacts of four parameters on electrical conductivity reduction,including(1)the initial concentration of feed solution,(2)the duration of the tests,(3)the applied voltage,and(4)the pH of the solution,were examined.The results show that the maximum efficiency of electrical conductivity reduction in this laboratory-scale reactor is about 55%.Furthermore,the effects of the initial concentration of feed solution are more significant than the other parameters.Thus,using the capacitive deionization method for water desalination with low and moderate salt concentrations(i.e.,brackish water)is proposed as an affordable method.Compared with conventional desalination methods,capacitive deionization is not only more efficient but also potentially more environmentally friendly.
基金supported by the National Natural Science Foundation of China under Grant Nos.51202194 and 51221001the Programme of Introducing Talents of Discipline to Universities(‘‘111’’project of China)under Grant No.B08040
文摘Carbon/carbon (C/C) composites were deposited with graphite-like carbon (GLC) coating, and then, Arg-Gly- Asp acid (RGD) peptides were successfully immobilized onto the functionalized GLC coating. GLC coating was utilized to prevent carbon particles releasing and create a uniform surface condition for C/C composites. RGD peptides were utilized to improve biocompatibility of GLC coating. Surface chemical characterizations of functionalized GLC coating were detected by contact angle measurement, X-ray photoelectron spectroscopy and Raman spectra. Optical morphology of GLC coatings was observed by confocal laser scanning microscopy. In vitro biological performance was determined using samples seeded with MC3T3-E1 osteoblast-like cells and cultured for 1 week. Surface characterizations and morphological analysis indicated that C/C composites were covered by a dense and uniform GLC coating. Contact angle of GLC coating was reduced to 27.2° when it was functionalized by H202 oxidation at 40 ℃ for 1 h. In vitro cytological test showed that the RGD peptides immobilized GLC coating had a significant improvement in biocompatibility. It was suggested that RGD peptides provided GLC coating with a bioactive surface to improve cell adhesion and proliferation on C/C composites.