期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ELASTO-PLASTIC BRANCHED ANALYSIS FOR AN INTERFACE CRACK BASED ON CRACK ENERGY DENSITY
1
作者 FAN, XY SATO, Y WATANABE, K 《Acta Mechanica Solida Sinica》 SCIE EI 1995年第2期171-177,共7页
The elasto-plastic finite element analyses for an interface crack in dissimilar material, based on the crack energy density (CED) concept, are investigated in mode I loading condition. It is confirmed that the values ... The elasto-plastic finite element analyses for an interface crack in dissimilar material, based on the crack energy density (CED) concept, are investigated in mode I loading condition. It is confirmed that the values of CED almost remain stable when the notch radius rho is sufficiently small, both in elastic and elasto-plastic case. Numerical results for both elastic and elasto-plastic cases show that under the mode I loading condition, when the crack propagates to the more stiff material with a small angle, the total CED will become larger than that along the interface. If the clack heads into the more compliant material, the CED will become less than that along the interface. 展开更多
关键词 INTERFACE crack crack energy density
下载PDF
Calculation of stress intensity factor in two-dimensional cracks by strain energy density factor procedure 被引量:1
2
作者 FANG Zhao LI AiQun +1 位作者 BAO HaiYing WANG Hao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第4期542-550,共9页
In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is p... In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is proposed. In this paper, the procedure is presented to calculate the SIF of crack tips in mode I cracks, mode II cracks and I+II mixed mode cracks. Meanwhile, the results are compared to those calculated by traditional approaches or other approaches based on strain energy density and verified by theoretical solutions. Furthermore, the effect of mesh density near the crack tip is discussed, and the proper location where the strain energy density factor is calculated is also studied. The results show that the SIF calculated by this procedure is close to not only those calculated by other approaches but also the theoretical solutions, thus it is capable of achieving accurate results.Besides, the mesh density around the crack tip should meet such requirements that, in the circular area created, the first layer of singular elements should have a radius about 0.05 mm and each element has a circumferential directional meshing angle to be15°–20°. Furthermore, for a single element around the crack tip, the strain energy density factor is suggested to be calculated in the location where half of the sector element's radius from the crack tip. 展开更多
关键词 stress intensity factor two-dimensional crack strain energy density factor averaged strain energy density
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部