The effects of cyclic loading on crack growth, fracture feature and rupture life of superalloy GH2132 have been studied in the present paper. The crack growth tests were carried out at 550 on compact tension specimens...The effects of cyclic loading on crack growth, fracture feature and rupture life of superalloy GH2132 have been studied in the present paper. The crack growth tests were carried out at 550 on compact tension specimens under a wide range of load levels and various periods of hold time, and the fracture surfaces were examined on a scanning electron microscope. The results show that, for both static and cyclic creep, Stage-I of crack growth is related with initial test stress, during which the crack extension is about 0.5mm, and that the final effect of cyclic loading on rupture life depends on the counteraction of its two reversed effects on crack growth rate before and after the point n=0.2.展开更多
Fatigue fracture is one of the main failure modes of Ti-6A1-4V alloy,fracture toughness and crack closure have strong effects on the fatigue crack growth(FCG)rate of Ti-6A1-4V alloy.The FCG rate of Ti-6A1-4V is inve...Fatigue fracture is one of the main failure modes of Ti-6A1-4V alloy,fracture toughness and crack closure have strong effects on the fatigue crack growth(FCG)rate of Ti-6A1-4V alloy.The FCG rate of Ti-6A1-4V is investigated by using experimental and analytical methods.The effects of stress ratio,crack closure and fracture toughness on the FCG rate are studied and discussed.A modified prediction model of the FCG rate is proposed,and the relationship between the fracture toughness and the stress intensity factor(SIF)range is redefined by introducing a correcting coefficient.Notched plate fatigue tests(including the fracture toughness test and the FCG rate test)are conducted to investigate the influence of affecting factors on the FCG rate.Comparisons between the predicted results of the proposed model,the Paris model,the Walker model,the Sadananda model,and the experimental data show that the proposed model gives the best agreement with the test data particularly in the near-threshold region and the Paris region,and the corresponding calculated fatigue life is also accurate in the same regions.By considering the effects of fracture toughness and crack closure,the novel FCG rate prediction model not only improves the estimating accuracy,but also extends the adaptability of the FCG rate prediction model in engineering.展开更多
Cold expansion is an efficient way to improve the fatigue life of an open hole. In this paper, three finite element models have been established to crack growth from an expanded hole is simulated. Expansion and its de...Cold expansion is an efficient way to improve the fatigue life of an open hole. In this paper, three finite element models have been established to crack growth from an expanded hole is simulated. Expansion and its degree influence are studied using a numerical analysis. Stress intensity factors are determined and used to evaluate the fatigue life. The residual stress field is evaluated using a nonlinear analysis and superposed with the applied stress field in order to estimate fatigue crack growth. Experimental test is conducted under constant loading. The results of this investigation indicate expansion and its degree are a benefit of fatigue life and a good agreement was observed between FEM simulations and experimental results.展开更多
Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhes...Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhesive debonding. The crack length and debonding area were measured at different numbers of cycles. The nonlinear three- dimensional(3D)finite element(FE)model considering adhesive debonding and crack growth simultaneously was developed. The experimental and analytical results were in good agreement with each other.展开更多
Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the avail...Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the availability of the filler material. In the present investigation, the fatigue crack growth behaviour of weld metal (WM) and heat affected zone (HAZ) regions of under matched (UM), equal matched (EM) and over matched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) process has been used to fabricate the butt joints. Centre cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behaviour of the welded joints. Fatigue crack growth experiments have been conducted using servo hydraulic controlled fatigue testing machine at constant amplitude loading (R=0).A method has been proposed to predict the fatigue life of HSLA steel welds using fracture mechanics approach by incorporating influences of mismatch ratio (MMR) and notch location.展开更多
In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in ...In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.展开更多
It is showed after the furnace tubes serviced for 8-10 years that the density of damage in the HAZ (heat affected zone) of the weld has higher than in parent metals, though the depth of damage is not equal to. By the ...It is showed after the furnace tubes serviced for 8-10 years that the density of damage in the HAZ (heat affected zone) of the weld has higher than in parent metals, though the depth of damage is not equal to. By the test of creep crack growth, it is also acquired that under same mechanic parameter C* (t), the rate of creep crack growth in the HAZ is more than twice as fast as in parent metals. Two mechanisms (overheating and thermal shock) of failure occurred in an accident are presented. The stress of thermal shock is analyzed, in which the change of the elasticity modulus with the radius ET = /(r) is considered. Based on it, the safety region of the thermal shock is obtained. Finally, two sets of curves for the safe life are suggested which can facilitate to estimate the remaining life of HK-40 or HP-Nb tubes by their creep rupture data.展开更多
The semi-elliptical surface crack growth of structural components with uncertain material resistance under random loading is studied by using the stochastic averaging principle.The FPK equation governing the transitio...The semi-elliptical surface crack growth of structural components with uncertain material resistance under random loading is studied by using the stochastic averaging principle.The FPK equation governing the transition probability density function of crack lengths is derived.The analytical solution of the FPK equation for the case of that the equations for the crack growth in the surface and depth directions are uncoupled is obtained.The effects of the parameters of the stress process and of the material property on the behavior of semi-elliptical fatigue crack growth of the components with deterministic resistance to crack growth in the stationary Gaussian stress process are examined.The comparison of the analytical result with digital simulation shows the effectiveness of the present method.展开更多
In this study, fatigue tests under different R ratios were conducted on the AZ61 Mg alloy to investigate its fatigue lifetimes and fatigue crack growth (FCG) behavior. The fracture surface of the failed specimens was ...In this study, fatigue tests under different R ratios were conducted on the AZ61 Mg alloy to investigate its fatigue lifetimes and fatigue crack growth (FCG) behavior. The fracture surface of the failed specimens was investigated using a scanning electron microscope to study the size of the intermetallic compounds from which the pioneer fatigue crack initiated and led to the final failure of the specimen. To determine the maximum size of the intermetallic compounds existing within the cross section of the specimen at higher risk, Gumbel’s extreme-value statistics were utilized. In the present study, the intermetallic compounds contained within the specimen were assumed to be the initial cracks existing in the material before the fatigue tests. A modified linear elastic fracture-mechanics parameter, M, proposed by McEvily et al., was used to analyze the short FCG behavior under different stress ratios, R. The relation between the rate of FCG and M parameter was found to be useful and appropriate for predicting the fatigue lifetimes under different R ratios. Moreover, the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios could be predicted with this method, which utilizes both the FCG law and a statistical distribution of sizes of the most dangerous intermetallic compounds. The evaluated results were in good agreement with the experimental ones. This correspondence indicates that the estimation method proposed in the present study is effective for evaluation of the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios.展开更多
文摘The effects of cyclic loading on crack growth, fracture feature and rupture life of superalloy GH2132 have been studied in the present paper. The crack growth tests were carried out at 550 on compact tension specimens under a wide range of load levels and various periods of hold time, and the fracture surfaces were examined on a scanning electron microscope. The results show that, for both static and cyclic creep, Stage-I of crack growth is related with initial test stress, during which the crack extension is about 0.5mm, and that the final effect of cyclic loading on rupture life depends on the counteraction of its two reversed effects on crack growth rate before and after the point n=0.2.
基金Supported by the Joint Funds of National Natural Science Foundation of ChinaCivil Aviation Administration Foundation of China(Grant No.U1233201)Science and Technology Support Plan of Tianjin,China(Grant No.13ZCZDGX00200)
文摘Fatigue fracture is one of the main failure modes of Ti-6A1-4V alloy,fracture toughness and crack closure have strong effects on the fatigue crack growth(FCG)rate of Ti-6A1-4V alloy.The FCG rate of Ti-6A1-4V is investigated by using experimental and analytical methods.The effects of stress ratio,crack closure and fracture toughness on the FCG rate are studied and discussed.A modified prediction model of the FCG rate is proposed,and the relationship between the fracture toughness and the stress intensity factor(SIF)range is redefined by introducing a correcting coefficient.Notched plate fatigue tests(including the fracture toughness test and the FCG rate test)are conducted to investigate the influence of affecting factors on the FCG rate.Comparisons between the predicted results of the proposed model,the Paris model,the Walker model,the Sadananda model,and the experimental data show that the proposed model gives the best agreement with the test data particularly in the near-threshold region and the Paris region,and the corresponding calculated fatigue life is also accurate in the same regions.By considering the effects of fracture toughness and crack closure,the novel FCG rate prediction model not only improves the estimating accuracy,but also extends the adaptability of the FCG rate prediction model in engineering.
文摘Cold expansion is an efficient way to improve the fatigue life of an open hole. In this paper, three finite element models have been established to crack growth from an expanded hole is simulated. Expansion and its degree influence are studied using a numerical analysis. Stress intensity factors are determined and used to evaluate the fatigue life. The residual stress field is evaluated using a nonlinear analysis and superposed with the applied stress field in order to estimate fatigue crack growth. Experimental test is conducted under constant loading. The results of this investigation indicate expansion and its degree are a benefit of fatigue life and a good agreement was observed between FEM simulations and experimental results.
文摘Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhesive debonding. The crack length and debonding area were measured at different numbers of cycles. The nonlinear three- dimensional(3D)finite element(FE)model considering adhesive debonding and crack growth simultaneously was developed. The experimental and analytical results were in good agreement with each other.
文摘Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the availability of the filler material. In the present investigation, the fatigue crack growth behaviour of weld metal (WM) and heat affected zone (HAZ) regions of under matched (UM), equal matched (EM) and over matched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) process has been used to fabricate the butt joints. Centre cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behaviour of the welded joints. Fatigue crack growth experiments have been conducted using servo hydraulic controlled fatigue testing machine at constant amplitude loading (R=0).A method has been proposed to predict the fatigue life of HSLA steel welds using fracture mechanics approach by incorporating influences of mismatch ratio (MMR) and notch location.
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundations of China (Grants 11172304 and 11202210)
文摘In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.
文摘It is showed after the furnace tubes serviced for 8-10 years that the density of damage in the HAZ (heat affected zone) of the weld has higher than in parent metals, though the depth of damage is not equal to. By the test of creep crack growth, it is also acquired that under same mechanic parameter C* (t), the rate of creep crack growth in the HAZ is more than twice as fast as in parent metals. Two mechanisms (overheating and thermal shock) of failure occurred in an accident are presented. The stress of thermal shock is analyzed, in which the change of the elasticity modulus with the radius ET = /(r) is considered. Based on it, the safety region of the thermal shock is obtained. Finally, two sets of curves for the safe life are suggested which can facilitate to estimate the remaining life of HK-40 or HP-Nb tubes by their creep rupture data.
基金This work is supported by the Key Laboratory of Mechanical Structure Strength and Vibration in Xi'an
文摘The semi-elliptical surface crack growth of structural components with uncertain material resistance under random loading is studied by using the stochastic averaging principle.The FPK equation governing the transition probability density function of crack lengths is derived.The analytical solution of the FPK equation for the case of that the equations for the crack growth in the surface and depth directions are uncoupled is obtained.The effects of the parameters of the stress process and of the material property on the behavior of semi-elliptical fatigue crack growth of the components with deterministic resistance to crack growth in the stationary Gaussian stress process are examined.The comparison of the analytical result with digital simulation shows the effectiveness of the present method.
文摘In this study, fatigue tests under different R ratios were conducted on the AZ61 Mg alloy to investigate its fatigue lifetimes and fatigue crack growth (FCG) behavior. The fracture surface of the failed specimens was investigated using a scanning electron microscope to study the size of the intermetallic compounds from which the pioneer fatigue crack initiated and led to the final failure of the specimen. To determine the maximum size of the intermetallic compounds existing within the cross section of the specimen at higher risk, Gumbel’s extreme-value statistics were utilized. In the present study, the intermetallic compounds contained within the specimen were assumed to be the initial cracks existing in the material before the fatigue tests. A modified linear elastic fracture-mechanics parameter, M, proposed by McEvily et al., was used to analyze the short FCG behavior under different stress ratios, R. The relation between the rate of FCG and M parameter was found to be useful and appropriate for predicting the fatigue lifetimes under different R ratios. Moreover, the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios could be predicted with this method, which utilizes both the FCG law and a statistical distribution of sizes of the most dangerous intermetallic compounds. The evaluated results were in good agreement with the experimental ones. This correspondence indicates that the estimation method proposed in the present study is effective for evaluation of the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios.