期刊文献+
共找到212,417篇文章
< 1 2 250 >
每页显示 20 50 100
Evolution model and failure mechanisms of rainfall-induced cracked red clay slopes:insights from Xinshao County,China
1
作者 JIAO Weizhi ZHANG Ming +4 位作者 LI Peng XIE Junjin PANG Haisong LIU Fuxing YANG Long 《Journal of Mountain Science》 SCIE CSCD 2024年第3期867-881,共15页
Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary pro... Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings. 展开更多
关键词 Red clay slopes cracks Preferential flow failure mechanism
下载PDF
Master crack types and typical acoustic emission characteristics during rock failure 被引量:2
2
作者 Tongbin Zhao Pengfei Zhang +3 位作者 Yaxun Xiao Weiyao Guo Yulong Zhang Xiufeng Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期73-86,共14页
Acoustic emission(AE)signals contain substantial information about the internal fracture characteristics of rocks and are useful for revealing the laws governing the release of energy stored therein.Reported here is t... Acoustic emission(AE)signals contain substantial information about the internal fracture characteristics of rocks and are useful for revealing the laws governing the release of energy stored therein.Reported here is the evolution of rock failure with diferent master crack types as investigated using Brazilian splitting tests(BSTs),direct shear tests(DSTs),and uniaxial compression tests(UCTs).The AE parameters and typical modes of each fracture type were obtained,and the energy release characteristics of each fracture mechanism were discussed.From the observed changes in the AE parameters,the rock fracture process exhibits characteristics of staged intensifcation.The scale and energy level of crack activity in the BSTs were signifcantly lower than those in the DSTs and UCTs.The proportion of tensile cracks in the BSTs was 65%–75%,while the proportions of shear cracks in the DSTs and UCTs were 75%–85%and 70%–75%,respectively.During the rock loading process under diferent conditions,failure was accompanied by an increased number of shear cracks.The amplitude,duration,and rise time of the AE signal from rock failure were larger when the failure was dominated by shear cracks rather than tensile ones,and most of the medium-and high-energy signals had medium to low frequencies.After calculating the proposed energy amplitude ratio,the energy release of shear cracks was found to exceed that of tensile cracks at the same fracture scale. 展开更多
关键词 Rock failure Fracture mechanism Acoustic emission Master crack type Energy release
下载PDF
Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining 被引量:29
3
作者 GAO Ming-zhong ZHANG Jian-guo +3 位作者 LI Sheng-wei WANG Man WANG Ying-wei CUI Peng-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3013-3024,共12页
The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitativel... The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitatively analyze the dynamic changes in the coal sample cracks under impact load conditions with different loading rates.The experimental results show that the fractal dimension can quantitatively describe the evolution process of coal fractures under dynamic load.During the dynamic compression process,the evolution of the coal sample cracks presents distinct stages.In the crack propagation stage,the fractal dimension increases rapidly with the progress of loading,and in the crack widening stage,the fractal dimension increases slowly with the progress of loading.The initiation of the crack propagation phase of the coal samples gradually occurs more quickly with increasing loading rate;the initial cracks appear earlier.At the same loading time point,when the loading rate is greater,the fractal dimension of the cracks observed in the coal sample is greater. 展开更多
关键词 fractal dimension loading rate impact load coal crack
下载PDF
Impact Failure of Flattened Brazilian Disc with Cracks——Process and Mechanism 被引量:1
4
作者 ZHANG Yafang LIU Hao +3 位作者 YIN Guoqi OU Chenggui LU Juan HE Juan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第5期1003-1010,共8页
Split Hopkinson pressure bar(SHPB)has been used to study the dynamic failure pattern of flattened mortar Brazilian disc under impact load.Each disc contains several prefabricated cracks paralleled to each other.Dynami... Split Hopkinson pressure bar(SHPB)has been used to study the dynamic failure pattern of flattened mortar Brazilian disc under impact load.Each disc contains several prefabricated cracks paralleled to each other.Dynamic FEM has also been adopted to simulate such failure behavior.The mechanism of crack initiation,propagation and cut-through have been scrutinized with both experimental and numerical approaches.Influence of the number of the prefabricated cracks on the specimen strength and acoustic emission(AE)performance can be observed and studied.The results show that the strength decreases and AE counts increases,when the number of the prefabricated cracks increases. 展开更多
关键词 paralleled cracks flattened brazilian disc impact load SHPB failure process acoustic emission
下载PDF
Damage and failure characteristics of rock similar materials with pre-existing cracks 被引量:5
5
作者 Xiaoyu Cheng 《International Journal of Coal Science & Technology》 EI 2019年第4期505-517,共13页
In order to further study the damage and failure mechanism for rock similar materials,this study investigated the mechanical properties and failure characteristics,law of damage space development,and damage evolution ... In order to further study the damage and failure mechanism for rock similar materials,this study investigated the mechanical properties and failure characteristics,law of damage space development,and damage evolution characteristics for rock similar materials with pre-existing cracks of varying length under uniaxial compression load.The equipment used in this study is the self-developed YYW-Ⅱ strain controlled unconfined compression apparatus and the PCIE-8 acoustic emission monitoring system.Results show that,as the length of pre-existing crack increases:(1) the peak and residual strength reduces,and the peak axial strain and the strain during the initial compression phase increases;(2) the major failure mode is changed from shear failure to tensile failure along a vertical plane that passes the middle of the pre-existing crack;(3) The damage increases during the stable and accelerated development stage,and the effect of the pre-existing cracks is more during the accelerated development stage than the stable development stage. 展开更多
关键词 Pre-existing cracks ROCK similar materials Mechanical properties ACOUSTIC EMISSION LOCALIZATION DAMAGE EVOLUTION
下载PDF
Strength failure and crack coalescence behavior of sandstone containing single pre-cut fissure under coupled stress, fluid flow and changing chemical environment 被引量:3
6
作者 鲁祖德 陈从新 +1 位作者 冯夏庭 张友良 《Journal of Central South University》 SCIE EI CAS 2014年第3期1176-1183,共8页
In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zheji... In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zhejiang Province, China, with a single pre-cut crack soaking in different chemical solutions. Based on the results of uniaxial compressive test under different chemical solutions and velocities of flow, the effect of strength and deformation characteristics and main modes of crack coalescence for cracked rocks under chemical corrosion were analyzed. The results show that the pH value and velocity of the chemical solutions both have great influence on the sandstone sample's uniaxial compressive strength and deformation characteristics. Cracked sandstone samples are tension-destructed under uniaxial compression, and the crack propagation directions are consistent with the loading direction. The phenomena of crack initiation, propagation and coalescence of sandstone are well observed. Four different crack types are identified based on the crack propagation mechanism by analyzing the ultimate failure modes of sandstone containing a single pre-cut fissure. The failure process of specimen in air is similar with the specimen under chemical solutions, however, the initial time of crack occuring in specimen under chemical solutions is generally earlier than that in the natural specimen, and the crack propagation and coalescence process of specimen under chemical solutions are longer than those of the natural specimen due to softening of structure of rock caused by hydro-chemical action. Immersion velocity of flow and chemical solutions does not have influence on the ultimate modes of crack coalescence. 展开更多
关键词 strength and deformation characteristics crack coalescence SANDSTONE single pre-cut fissure chemical environment
下载PDF
Debonding Failure in FRP Reinforced SHCC Beams Induced from MultipleFlexural-Shear Cracks under Three-Point Bending Test 被引量:1
7
作者 Jihong Hu Mingqing Sun +1 位作者 Wei Huang Yingjun Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期191-207,共17页
Strain hardening cement-based composites(SHCC)beam externally bonded with glass fiber-reinforced polymer(FRP)plate was examined under three-point flexural test.The effects of the type of substrate used(plain cement mo... Strain hardening cement-based composites(SHCC)beam externally bonded with glass fiber-reinforced polymer(FRP)plate was examined under three-point flexural test.The effects of the type of substrate used(plain cement mortar vs.SHCC),the use or not of a FRP plate to strengthen the SHCC beam,and the thickness of the FRP plate on the flexural performances were studied.Results show that the ultimate load of SHCC beams strengthened with FRP plate has improved greatly in comparison with plain SHCC beams.The deformation capacity of beams makes little change with an increase in the thickness of FRP plates.The formation of multiple flexural-shear cracks(MFSC)is the unique feature of SHCC beams bonded with FRP plates under three-point bending.The debonding of the FRP plate is initiated from MFSC.The initiated debonding area(IDA)is formed by the joint points of the flexural-shear cracks with the FRP plate.Then the debonding strain is represented using the average strain of FRP plate within IDA,which decreases with an increase of FRP plate thickness.The experimental values of the debonding strain of SHCC beam reinforced with FRP plate are close to those predicted by the JSCE’s equation. 展开更多
关键词 SHCC FRP debonding strain flexural-shear crack initiated debonding area
下载PDF
Flexural failure experiment on cracked PC simply supported box girders 被引量:1
8
作者 CAO Guo-hui ZHANG Wang +1 位作者 PENG Xi-rong ZHANG Sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第11期2685-2692,共8页
Long-term load and flexural failure experiments are carried out on two prestressed concrete(PC) simply supported box girders. In the long-term load experiment, girder-1(G1) is in an elastic state, while girder-2(G2) i... Long-term load and flexural failure experiments are carried out on two prestressed concrete(PC) simply supported box girders. In the long-term load experiment, girder-1(G1) is in an elastic state, while girder-2(G2) is in a cracking state. To investigate the influence of cracking on the flexural behaviors of PC simply supported box beams, the experiment results are analyzed from many aspects, such as load–deflection, load–strain, and failure mode. Experiment results show the following: 1) the shrinkage and creep of concrete have considerable influences on the long-term deflection and strain of the two girders; 2) in the flexural failure experiment, the cracks and ultimate loads of the two girders are close. The rigidity degeneration of G2 is significantly faster than that of G1, and thus G2 shows nonlinear characteristics earlier; 3) to prove the validity and rationality of the current code, the cracking load and ultimate load of the two girders are calculated according to the current code. 展开更多
关键词 PC box girders long-term load experiment flexural behaviors cracks static performance
下载PDF
Influence of Intersection Angle of Prefabricated Cracks on Impact Failure of Flattened Brazilian Disc
9
作者 LIU Hao ZHANG Yafang +3 位作者 YIN Guoqi OU Chenggui LU Juan HUO Yongjie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第6期884-890,共7页
Both experimental and numerical approaches were used to study dynamic failure properties and patterns of flattened Brazilian discs,containing two prefabricated cracks intersected at a varying angle.Mechanism of crack ... Both experimental and numerical approaches were used to study dynamic failure properties and patterns of flattened Brazilian discs,containing two prefabricated cracks intersected at a varying angle.Mechanism of crack initiation,propagation,and cut-through were scrutinized and influences of the intersection angle on specimen strength and acoustic emission performance were also studied.All primary cracks initialize near the middle or the tip points of the upper prefabricated crack,and they continue to develop along the load direction and finally cut through the specimen.The secondary cracks could be observed in directions almost horizontal or parallel to the directions of prefabricated cracks.Furthermore,it is found that stress intensity factor reaches its maximum for specimen with intersection angle of 0 degree. 展开更多
关键词 crack flattened brazilian disc impact load SHPB failure process acoustic emission
下载PDF
Crack Propagation and Failure Characteristics of Modeled Concrete with Natural and Brick Aggregates
10
作者 Qiong Liu Jianzhuang Xiao Amardeep Singh 《Journal of Renewable Materials》 SCIE EI 2021年第7期1309-1327,共19页
The failure characteristics of recycled concrete containing brick aggregates are still indistinct,especially how the angular aggregates effect the crack propagation.Based on the concept of modeled concrete,the develop... The failure characteristics of recycled concrete containing brick aggregates are still indistinct,especially how the angular aggregates effect the crack propagation.Based on the concept of modeled concrete,the development of cracks in concrete containing the natural aggregate and brick aggregate under a compression loading was studied.The strain distribution was analyzed with the Digital Image Correlation(DIC).The modeled aggregates include circular and squared ones,and the squared modeled aggregates were placed in different orientations,including 0°,22.5°and 45°.The results show that when the aggregate is placed at 45°,the upper and lower vertices of the aggregate lead to the highest critical strain concentration,therefore,cracks are easy to propagate from these areas and the strength of the corresponding modeled concrete is the lowest.When the modeled natural aggregate is placed at the orientation of 0°,the strain concentration first appears at the interface on both lateral sides of the aggregate.The brick aggregate has a lower elastic modulus and strength than the surrounding mortar.As a result,cracks always propagate through the brick aggregate,which is the primary reason for the low strength of the corresponding concrete. 展开更多
关键词 Recycled concrete brick aggregate modeled concrete mechanical properties crack propagation
下载PDF
Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys 被引量:1
11
作者 Zongli Yi Jiguo Shan +2 位作者 Yue Zhao Zhenlin Zhang Aiping Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1072-1088,共17页
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ... Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary. 展开更多
关键词 nickel-based superalloy fusion welding liquation cracking cracking mechanism cracking suppression
下载PDF
Understanding Fatigue Failure in Binary Rubber Blends: Role of Crack Initiation and Propagation
12
作者 PAN Lijia WANG Yuge +1 位作者 WEI Lai SUN Zhaoyan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2024年第6期987-993,共7页
Under cyclic loading conditions,the breakdown of rubber products is mainly caused by the formation and spread of cracks.This study focuses on understanding how cracks initiate and grow during the fatigue failure of bl... Under cyclic loading conditions,the breakdown of rubber products is mainly caused by the formation and spread of cracks.This study focuses on understanding how cracks initiate and grow during the fatigue failure of blended rubber.We prepared composite materials by blending bio-mimetic rubber (BMR);butadiene rubber (BR) in different mass ratios and evaluated their resistance to crack initiation and propagation.Our results indicate a clear trend: as the BR content increases,crack initiation in blended rubber is inhibited,while crack propagation is enhanced.This shift leads to a change in the primary factor influencing fatigue fracture from crack initiation to crack propagation.Additionally,we observed that the fatigue life of the rubber blend initially increases and then decreases as the BMR content rises,indicating a critical threshold when the mass ratio of BMR to BR is comparable.By closely examining the materials using a scanning electron microscope (SEM);image analysis,we confirmed that before the threshold,crack initiation is the dominant factor in fatigue failure,while after the threshold,crack propagation takes over.This study provides valuable insights into the mechanisms behind fatigue failure in rubber blends,contributing to a better understanding of this important material behavior. 展开更多
关键词 Blended rubber Fatigue failure crack initiation crack propagation Fracture microstructure
原文传递
Characterization of alpine meadow surface crack and its correlation with root-soil properties
13
作者 WU Yuechen ZHU Haili +5 位作者 ZHANG Yu ZHANG Hailong LIU Guosong LIU Yabin LI Guorong HU Xiasong 《Journal of Arid Land》 SCIE CSCD 2024年第6期834-851,共18页
Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex c... Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks. 展开更多
关键词 alpine meadow grassland degradation grassland cracks crack characterization index crack morphology root length density grey relation analysis
下载PDF
Failure analysis of corrosion cracking and simulated testing for a fluid catalytic cracking unit
14
作者 HuaChen XiaogangLi +2 位作者 ChaofangDong MingLi JinwenYang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期172-177,共6页
The failure of a fluid catalysis and cracking unit (FCCU) in a Chinese refinery was investigated by using nondestructive detection methods, fracture surface examination, hardness measurement, chemical composition and... The failure of a fluid catalysis and cracking unit (FCCU) in a Chinese refinery was investigated by using nondestructive detection methods, fracture surface examination, hardness measurement, chemical composition and corrosion products analysis. The results showed that the failure was caused by the dew point nitrate stress corrosion cracking. For a long operation period, the wall temperature of the regenerator in the FCCU was below the fume dew point. As a result, an acid fume NOx-SOx-H2O medium present- ed on the surface, resulting in stress corrosion cracking of the component with high residual stress. In order to confirm the relative conclusion, simulated testing was conducted in laboratory, and the results showed similar cracking characteristics. Finally, some sug- gestions have been made to prevent the stress corrosion cracking of an FCCU from re-occurring in the future. 展开更多
关键词 stress corrosion cracking fluid catalytic cracking unit dew point failure
下载PDF
Current concept in the diagnosis,treatment and rehabilitation of patients with congestive heart failure 被引量:5
15
作者 Ivana Sopek Merkas Ana Marija Sliskovic Nenad Lakusic 《World Journal of Cardiology》 2021年第7期183-203,共21页
Heart failure(HF)is a major public health problem with a prevalence of 1%-2%in developed countries.The underlying pathophysiology of HF is complex and as a clinical syndrome is characterized by various symptoms and si... Heart failure(HF)is a major public health problem with a prevalence of 1%-2%in developed countries.The underlying pathophysiology of HF is complex and as a clinical syndrome is characterized by various symptoms and signs.HF is classified according to left ventricular ejection fraction(LVEF)and falls into three groups:LVEF≥50%-HF with preserved ejection fraction(HFpEF),LVEF<40%-HF with reduced ejection fraction(HFrEF),LVEF 40%-49%-HF with mid-range ejection fraction.Diagnosing HF is primarily a clinical approach and it is based on anamnesis,physical examination,echocardiogram,radiological findings of the heart and lungs and laboratory tests,including a specific markers of HF-brain natriuretic peptide or N-terminal pro-B-type natriuretic peptide as well as other diagnostic tests in order to elucidate possible etiologies.Updated diagnostic algorithms for HFpEF have been recommended(H2FPEF,HFA-PEFF).New therapeutic options improve clinical outcomes as well as functional status in patients with HFrEF(e.g.,sodium-glucose cotransporter-2-SGLT2 inhibitors)and such progress in treatment of HFrEF patients resulted in new working definition of the term“HF with recovered left ventricular ejection fraction”.In line with rapid development of HF treatment,cardiac rehabilitation becomes an increasingly important part of overall approach to patients with chronic HF for it has been proven that exercise training can relieve symptoms,improve exercise capacity and quality of life as well as reduce disability and hospitalization rates.We gave an overview of latest insights in HF diagnosis and treatment with special emphasize on the important role of cardiac rehabilitation in such patients. 展开更多
关键词 Heart failure Classification of heart failure Diagnosis of heart failure Treatment of heart failure Cardiac rehabilitation Heart failure rehabilitation
下载PDF
Closure Effect ofⅠ+ⅡMixed-mode Crack for EA4T Axle Steel
16
作者 Shuancheng Wang Bing Yang +2 位作者 Shuwei Zhou Jian Li Shoune Xiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期327-341,共15页
The crack-closure effect is a crucial factor that affects the crack growth rate and should be considered in simulation analysis and testing.A mixed-mode I+II loading fatigue crack growth test was performed using EA4T ... The crack-closure effect is a crucial factor that affects the crack growth rate and should be considered in simulation analysis and testing.A mixed-mode I+II loading fatigue crack growth test was performed using EA4T axle steel specimens.The variation of the plastic-induced crack closure(PICC)effect and the roughness-induced crack closure(RICC)effect during crack deflection in the mixed-mode is examined in this study.The results show that the load perpendicular to the crack propagation direction hinders the slip effect caused by the load parallel to the crack propagation direction under mixed-mode loading,and the crack deflection is an intuitive manifestation of the interaction between the PICC and RICC.The proportion of the RA value change on the crack side caused by contact friction was reduced by the interaction between PICC and RICC.The roughness of the crack surface before and after the crack deflection is different,and the spatial torsion crack surface is formed during the crack propagation process.With the increase of the crack length,the roughness of the fracture surface increases.During the crack deflection process,the PICC value fluctuates around 0.2,and the RICC value is increased to 0.15. 展开更多
关键词 crack closure crack deflection Plasticity-induced closure Roughness-induced closure Interaction mechanism
下载PDF
Effect of carbon material and surfactant on ink property and resulting surface cracks of fuel-cell microporous layers
17
作者 Zhekun Chen Weitong Pan +2 位作者 Longfei Tang Xueli Chen Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期1-12,共12页
Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is t... Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication. 展开更多
关键词 Proton-exchange-membrane fuel cell Microporous layer crack density crack homogeneity Polytetrafluoroethylene distribution SURFACTANT
下载PDF
A modified smoothed particle hydrodynamics method considering residual stress for simulating failure and its application in layered rock mass
18
作者 XIA Chengzhi SHI Zhenming KOU Huanjia 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2091-2112,共22页
Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strat... Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses. 展开更多
关键词 Smoothed particle hydrodynamics cracking strategy Residual stress Layered rock crack propagation
下载PDF
Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material
19
作者 Zediao Chen Feng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2215-2236,共22页
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ... Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials. 展开更多
关键词 Discontinuous deformation analysis particle DDA crack propagation crack branching brittle materials
下载PDF
Analytical solution for the effective elastic properties of rocks with the tilted penny-shaped cracks in the transversely isotropic background
20
作者 Zheng-Qian Ma Xing-Yao Yin +2 位作者 Zhao-Yun Zong Yuan-Yuan Tan Ya-Ming Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期221-243,共23页
Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with th... Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock. 展开更多
关键词 Effective elastic property Tilted crack Transverse isotropy Analytical solution crack opening displacement
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部