The problem of skewness is common among clinical trials and survival data, which has been the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Ray...The problem of skewness is common among clinical trials and survival data, which has been the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Rayleigh Lomax distribution is constructed from Rayleigh Lomax distribution to capture the excessiveness of some survival data. We derive the new distribution by using beta logit function proposed by Jones (2004). Some statistical properties of the distribution such as density, cumulative density, reliability rate, hazard rate, reverse hazard rate, moment generating and likelihood functions;skewness, kurtosis and coefficient of variation are obtained. We also performed the expected estimation of model parameters by maximum likelihood;goodness of fit and model selection criteria, including Anderson Darling, CramerVon Misses, Kolmogorov Smirnov (KS), Akaike Information, Bayesian Information, and Consistent Akaike Information Criterion is employed to select the better distribution from those models considered in the work. The results from the statistics criteria show that the intended distribution performs well and has a good representation of the States in Nigeria’s Covid-19 death cases data than other competing models.展开更多
文摘The problem of skewness is common among clinical trials and survival data, which has been the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Rayleigh Lomax distribution is constructed from Rayleigh Lomax distribution to capture the excessiveness of some survival data. We derive the new distribution by using beta logit function proposed by Jones (2004). Some statistical properties of the distribution such as density, cumulative density, reliability rate, hazard rate, reverse hazard rate, moment generating and likelihood functions;skewness, kurtosis and coefficient of variation are obtained. We also performed the expected estimation of model parameters by maximum likelihood;goodness of fit and model selection criteria, including Anderson Darling, CramerVon Misses, Kolmogorov Smirnov (KS), Akaike Information, Bayesian Information, and Consistent Akaike Information Criterion is employed to select the better distribution from those models considered in the work. The results from the statistics criteria show that the intended distribution performs well and has a good representation of the States in Nigeria’s Covid-19 death cases data than other competing models.