The effects of diacetyl tartaric acid ester of monoglycerides (DATEM), ascorbic acid (AA), urea, and dithiothreitol (DTT) on viscoelastic properties of commercial hard red winter wheat gluten were investigated. A cons...The effects of diacetyl tartaric acid ester of monoglycerides (DATEM), ascorbic acid (AA), urea, and dithiothreitol (DTT) on viscoelastic properties of commercial hard red winter wheat gluten were investigated. A constant shear stress of 40 Pa was applied to gluten during creep-recovery test. Experimental creep-recovery compliance responses were fitted into a Burgers model with four elements accounting for characteristics of pure elastic (spring), viscoelastic (spring-dashpots elements), and viscous flow (dashpot). DATEM decreased the elasticity and viscoelasticity, but increased viscosity of gluten. The addition of AA, urea, and DTT, resulted in opposite rheological properties when compared with DATEM. Relationship among physical properties was also studied with principal component analysis (PCA) including gluten viscoelasticity, dough mixing and baking properties. Regressed coefficients from Burgers model accounted for higher percent of explained variance and were independent from flour content, baking and dough mixing properties.展开更多
Electrorheological properties and creep-recovery behavior of polythiophene/polyoxymethylene-blend having PT(50%)/POM(50%) composition were investigated.Particle size,conductivity and dielectric values were measure...Electrorheological properties and creep-recovery behavior of polythiophene/polyoxymethylene-blend having PT(50%)/POM(50%) composition were investigated.Particle size,conductivity and dielectric values were measured to be 24.77μm,3.85×10^(-5) S·m^(-1) and 26.75,respectively.Sedimentation ratio was measured to be 64%at the end of 16 days.The effects of dispersed particle volume fraction,external electric field strength,shear rate,frequency and temperature on ER properties and storage modulus of PT/POM-blend/silicone oil(SO) suspensions were examined.Enhancement were observed in the electric field viscosities of the suspensions and thus they were classified as a smart material.Shear thinning non-Newtonian viscoelastic behavior was determined for PT/POM-blend/SO system.Further,time-dependent deformation was examined by creep-recovery tests and recoverable viscoelastic deformation established.展开更多
The dynamic behavior of entangled poly(methyl methacrylate)(PMMA)chains in both the traditional monocationic ionic liquid(MIL)and synthetic dicationic ionic liquid(DIL)with the same anion bis[(trifluoromethyl)sulfonyl...The dynamic behavior of entangled poly(methyl methacrylate)(PMMA)chains in both the traditional monocationic ionic liquid(MIL)and synthetic dicationic ionic liquid(DIL)with the same anion bis[(trifluoromethyl)sulfonyl]imide([TFSI]−)has been examined over the wide composition range using differential scanning calorimetry and rheological measurements.PMMA/DIL and PMMA/MIL systems exhibit two glass transitions in the midrange of composition due to self-concentration effects.PMMA in DIL shows slower relaxation behavior,however,after the iso-free-volume correction,the terminal relaxation timeτ_(0)of PMMA in both the DIL and MIL presents the power law behaviorτ_(0)∼ϕ^(v)with exponent v conforming to experimental results for conventional polymer solutions(v=2.0±0.2).At high ILs concentration(70%),the entanglement molecular weight M_(e)of PMMA/DIL system is lower than that of PMMA/MIL system owing to the formation of additional physical network in DIL,while the difference of M_(e)is reversed at low ILs content.The composition dependence might be related to the fact that the probability of formation of physical cross-linking points in linked double imidazolium ring increases with the increase of DIL content.The recovered creep strain of PMMA/DIL is almost 18 times of PMMA/MIL,exhibiting significantly better viscoelastic behavior.展开更多
This paper discusses a visco-elastoplastic constitutive model to analyze the creep deformability of asphalt concretes at high service temperatures, finalized to improve the interpretation of permanent deformation phen...This paper discusses a visco-elastoplastic constitutive model to analyze the creep deformability of asphalt concretes at high service temperatures, finalized to improve the interpretation of permanent deformation phenomenon and performance design of road pavements. A three dimensional constitutive visco-elastoplastic model is introduced, in tensor as well as in numerical form. The associated uniaxial model is used to arrange a plastic element in series with the viscoelastic component. The latter is defined by an elastic spring placed in parallel with three Maxwell elements. Three different hardening laws, namely isotropic, kinematic and mixed hardening, are included in the constitutive model to compare the creep deformability. The proposed constitutive model has been calibrated and validated on the basis of uniaxial creep-recovery test results at 40℃. This is performed with a high performance hot mix asphalt concrete (HP-HMA) at different stresses and loading times. Depending on the hardening law considered, permanent deformation data predicted by the proposed model results are reasonably consistent with the experimental creep-recovery data. A rational constitutive model that is physically congruent with the creep phenomenon of asphalt concretes was developed and calibrated to achieve a deeper understanding of the stress-strain response of such materials. The fundamental relevance of an appropriate plastic response modeling, in the study of the creep behavior of asphalt concretes for highway and road pavements.展开更多
文摘The effects of diacetyl tartaric acid ester of monoglycerides (DATEM), ascorbic acid (AA), urea, and dithiothreitol (DTT) on viscoelastic properties of commercial hard red winter wheat gluten were investigated. A constant shear stress of 40 Pa was applied to gluten during creep-recovery test. Experimental creep-recovery compliance responses were fitted into a Burgers model with four elements accounting for characteristics of pure elastic (spring), viscoelastic (spring-dashpots elements), and viscous flow (dashpot). DATEM decreased the elasticity and viscoelasticity, but increased viscosity of gluten. The addition of AA, urea, and DTT, resulted in opposite rheological properties when compared with DATEM. Relationship among physical properties was also studied with principal component analysis (PCA) including gluten viscoelasticity, dough mixing and baking properties. Regressed coefficients from Burgers model accounted for higher percent of explained variance and were independent from flour content, baking and dough mixing properties.
基金financially supported by Turkish Scientific and Technological Research Council(No.107 T 711)
文摘Electrorheological properties and creep-recovery behavior of polythiophene/polyoxymethylene-blend having PT(50%)/POM(50%) composition were investigated.Particle size,conductivity and dielectric values were measured to be 24.77μm,3.85×10^(-5) S·m^(-1) and 26.75,respectively.Sedimentation ratio was measured to be 64%at the end of 16 days.The effects of dispersed particle volume fraction,external electric field strength,shear rate,frequency and temperature on ER properties and storage modulus of PT/POM-blend/silicone oil(SO) suspensions were examined.Enhancement were observed in the electric field viscosities of the suspensions and thus they were classified as a smart material.Shear thinning non-Newtonian viscoelastic behavior was determined for PT/POM-blend/SO system.Further,time-dependent deformation was examined by creep-recovery tests and recoverable viscoelastic deformation established.
基金the National Natural Science Foundation of China(Nos.51873125,52073184 and 51721091)Scientific Research Foundation of International Cooperation and Exchanges of Sichuan Province(No.2019YFH0027).
文摘The dynamic behavior of entangled poly(methyl methacrylate)(PMMA)chains in both the traditional monocationic ionic liquid(MIL)and synthetic dicationic ionic liquid(DIL)with the same anion bis[(trifluoromethyl)sulfonyl]imide([TFSI]−)has been examined over the wide composition range using differential scanning calorimetry and rheological measurements.PMMA/DIL and PMMA/MIL systems exhibit two glass transitions in the midrange of composition due to self-concentration effects.PMMA in DIL shows slower relaxation behavior,however,after the iso-free-volume correction,the terminal relaxation timeτ_(0)of PMMA in both the DIL and MIL presents the power law behaviorτ_(0)∼ϕ^(v)with exponent v conforming to experimental results for conventional polymer solutions(v=2.0±0.2).At high ILs concentration(70%),the entanglement molecular weight M_(e)of PMMA/DIL system is lower than that of PMMA/MIL system owing to the formation of additional physical network in DIL,while the difference of M_(e)is reversed at low ILs content.The composition dependence might be related to the fact that the probability of formation of physical cross-linking points in linked double imidazolium ring increases with the increase of DIL content.The recovered creep strain of PMMA/DIL is almost 18 times of PMMA/MIL,exhibiting significantly better viscoelastic behavior.
文摘This paper discusses a visco-elastoplastic constitutive model to analyze the creep deformability of asphalt concretes at high service temperatures, finalized to improve the interpretation of permanent deformation phenomenon and performance design of road pavements. A three dimensional constitutive visco-elastoplastic model is introduced, in tensor as well as in numerical form. The associated uniaxial model is used to arrange a plastic element in series with the viscoelastic component. The latter is defined by an elastic spring placed in parallel with three Maxwell elements. Three different hardening laws, namely isotropic, kinematic and mixed hardening, are included in the constitutive model to compare the creep deformability. The proposed constitutive model has been calibrated and validated on the basis of uniaxial creep-recovery test results at 40℃. This is performed with a high performance hot mix asphalt concrete (HP-HMA) at different stresses and loading times. Depending on the hardening law considered, permanent deformation data predicted by the proposed model results are reasonably consistent with the experimental creep-recovery data. A rational constitutive model that is physically congruent with the creep phenomenon of asphalt concretes was developed and calibrated to achieve a deeper understanding of the stress-strain response of such materials. The fundamental relevance of an appropriate plastic response modeling, in the study of the creep behavior of asphalt concretes for highway and road pavements.