Exit delamination is excessive drilling thrust force.Therefore,it is necessary to investigate the critical thrust force which cause exit delamination when carbon fibre reinforced plastics(CRFP)is drilled.According to ...Exit delamination is excessive drilling thrust force.Therefore,it is necessary to investigate the critical thrust force which cause exit delamination when carbon fibre reinforced plastics(CRFP)is drilled.According to the linear elastic fracture mechanics,the mechanics of composite material and the classical thin plate bending theory,a common theoretical model of the critical drilling thrust force for CFRP plates is established.Compared with the experimental data of previous studies,the results show that the theoretical values agree well with the experimental values.This model can be used to forecast the critical thrust force for the drilling-induced delamination of CFRP.展开更多
Using gauge field theory of defects,the effective critical extension force in elastic-plastic fracture mechanics was given.The rationality of logarithm of effective extension force as a linear function of the fractal ...Using gauge field theory of defects,the effective critical extension force in elastic-plastic fracture mechanics was given.The rationality of logarithm of effective extension force as a linear function of the fractal dimensionality of the fracture surface was analyzed in theory. The explanation in approach to studying material toughness using fractal has been clarified.展开更多
Experimental results of the temperature dependence of critical resolved. shear stresses (CRSS)of Mo, Fe, Al and Mg single crystals are shown. Associating reports in recent years, we point out that the approximate expo...Experimental results of the temperature dependence of critical resolved. shear stresses (CRSS)of Mo, Fe, Al and Mg single crystals are shown. Associating reports in recent years, we point out that the approximate exponential relationship between CRSS and the absolute temperatureat least in the region of the steep temperature dependence range of many materials is more common, even for bcc, fcc, and hcp single crystals. polycrystals and other covalent crystals,provided that the slip plane and slip direction are kept the same. Successful explanation with atomic force law shows that the interatomic forces (electronic structure) play a decisive role in determining the temperature dependence of yield stresses for a large number of materials.展开更多
Under isothermal quasi-static stretching the phase transition of a superelastic NiTi tube involves the formation (during loading) and vanishing (in unloading) of a high strain (martensite) domain. The two events...Under isothermal quasi-static stretching the phase transition of a superelastic NiTi tube involves the formation (during loading) and vanishing (in unloading) of a high strain (martensite) domain. The two events are accompanied by a rapid stress drop/rise due to the formation/vanishing of do- main fronts. From a thermodynamic point of view, both are instability phenomena that occur once the system reaches its critical state. This paper investigates the stability of a shrink- ing cylindrical domain in a tube configuration during unload- ing. The energetics and thermodynamic driving force of the cylindrical domain are quantified by using an elastic inclu- sion model. It is demonstrated that the two domain fronts ex- hibit strong interaction when they come close to each other, which brings a peak in the total energy and a sign change in the thermodynamic driving force. It is proved that such domain front interaction plays an important role in control- ling the stability of the domain and in the occurrence of stress jumps during domain vanishing. It is also shown that the pro- cess is governed by two nondimensional length scales (the normalized tube length and normalized wall-thickness) and that the length scale dependence of the critical domain length and stress jump for the domain vanishing can be quantified by the elastic inclusion model.展开更多
The characteristic that multiple limb manipulation systems can resist disturbance external forces without relying on the feedback control of joint torques, called the robustness, has been addressed by several resear...The characteristic that multiple limb manipulation systems can resist disturbance external forces without relying on the feedback control of joint torques, called the robustness, has been addressed by several researchers. Based on their results, a further study of robustness is presented in this paper. By decomposing the space of external forces into two subspaces, the necessary and sufficient condition for a system to have robustness is given and a definition of robustness which is applicable to any multiple limb systems is also proposed. For the purpose of the evaluation of robustness, a new quality measure — critical disturbance external force and its algorithm are put forward. Finally, two examples of robustness analysis are presented.展开更多
During the threshing process of rice,the grains fall off the head of the rice ear due to the impact of the threshing bar.At the same time,the impact force of the threshing element causes a certain degree of damage to ...During the threshing process of rice,the grains fall off the head of the rice ear due to the impact of the threshing bar.At the same time,the impact force of the threshing element causes a certain degree of damage to the grain.However,there are relatively few methods to analyze the internal damage of rice grains during the threshing process.In this study,the connection force between rice grains and stalks and the compressive bearing capacity of the grains were tested on a push-pull test machine,and then the critical impact force and velocity of rice grains during plastic deformation and brittle fracture were obtained by Hertz theory.On this basis,the quantitative evaluation model of grain internal damage was established through the extraction and calculation of the damaged area inside the grain,and the damage degrees inside the grain under different loading times and loading forces were analyzed.The results showed that the average threshing force required for rice grains is 1.57 N(variance is 0.0529),and the critical impact forces for plastic deformation and brittle fracture of the grains during threshing are 138.79 N and 145.77 N.Since the threshing force during the threshing process was 43.9-71.9 N,it could be known from the internal damage model that the grain is in the safe loading area.Under the same load,the vertical pressure causes the most damage,the lateral pressure takes second place,and the positive pressure was the least.The results of this study can provide a basis for the development of combine harvester and rice grains damage evaluation.展开更多
基金the financial support of Aeronautical Science Foundations of China(No.2013ZE52067,No.2014ZE52057)
文摘Exit delamination is excessive drilling thrust force.Therefore,it is necessary to investigate the critical thrust force which cause exit delamination when carbon fibre reinforced plastics(CRFP)is drilled.According to the linear elastic fracture mechanics,the mechanics of composite material and the classical thin plate bending theory,a common theoretical model of the critical drilling thrust force for CFRP plates is established.Compared with the experimental data of previous studies,the results show that the theoretical values agree well with the experimental values.This model can be used to forecast the critical thrust force for the drilling-induced delamination of CFRP.
文摘Using gauge field theory of defects,the effective critical extension force in elastic-plastic fracture mechanics was given.The rationality of logarithm of effective extension force as a linear function of the fractal dimensionality of the fracture surface was analyzed in theory. The explanation in approach to studying material toughness using fractal has been clarified.
文摘Experimental results of the temperature dependence of critical resolved. shear stresses (CRSS)of Mo, Fe, Al and Mg single crystals are shown. Associating reports in recent years, we point out that the approximate exponential relationship between CRSS and the absolute temperatureat least in the region of the steep temperature dependence range of many materials is more common, even for bcc, fcc, and hcp single crystals. polycrystals and other covalent crystals,provided that the slip plane and slip direction are kept the same. Successful explanation with atomic force law shows that the interatomic forces (electronic structure) play a decisive role in determining the temperature dependence of yield stresses for a large number of materials.
基金supported by the Hong Kong Research Grants Council (GRF619511)the National Natural Science Foundation of China (11128204)
文摘Under isothermal quasi-static stretching the phase transition of a superelastic NiTi tube involves the formation (during loading) and vanishing (in unloading) of a high strain (martensite) domain. The two events are accompanied by a rapid stress drop/rise due to the formation/vanishing of do- main fronts. From a thermodynamic point of view, both are instability phenomena that occur once the system reaches its critical state. This paper investigates the stability of a shrink- ing cylindrical domain in a tube configuration during unload- ing. The energetics and thermodynamic driving force of the cylindrical domain are quantified by using an elastic inclu- sion model. It is demonstrated that the two domain fronts ex- hibit strong interaction when they come close to each other, which brings a peak in the total energy and a sign change in the thermodynamic driving force. It is proved that such domain front interaction plays an important role in control- ling the stability of the domain and in the occurrence of stress jumps during domain vanishing. It is also shown that the pro- cess is governed by two nondimensional length scales (the normalized tube length and normalized wall-thickness) and that the length scale dependence of the critical domain length and stress jump for the domain vanishing can be quantified by the elastic inclusion model.
文摘The characteristic that multiple limb manipulation systems can resist disturbance external forces without relying on the feedback control of joint torques, called the robustness, has been addressed by several researchers. Based on their results, a further study of robustness is presented in this paper. By decomposing the space of external forces into two subspaces, the necessary and sufficient condition for a system to have robustness is given and a definition of robustness which is applicable to any multiple limb systems is also proposed. For the purpose of the evaluation of robustness, a new quality measure — critical disturbance external force and its algorithm are put forward. Finally, two examples of robustness analysis are presented.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51705212)Jiangsu Province“Six Talents Peak”High-level Talent Project(GDZB-085)+2 种基金Natural Science Foundation of Jiangsu Province(BK20170553)Open Fund of Jiangsu Key Laboratory of Agricultural Equipment and Intelligent High Technology(JNZ201912)and Jiangsu Province Postgraduate Research and Innovation Project(KYCX20_3086).
文摘During the threshing process of rice,the grains fall off the head of the rice ear due to the impact of the threshing bar.At the same time,the impact force of the threshing element causes a certain degree of damage to the grain.However,there are relatively few methods to analyze the internal damage of rice grains during the threshing process.In this study,the connection force between rice grains and stalks and the compressive bearing capacity of the grains were tested on a push-pull test machine,and then the critical impact force and velocity of rice grains during plastic deformation and brittle fracture were obtained by Hertz theory.On this basis,the quantitative evaluation model of grain internal damage was established through the extraction and calculation of the damaged area inside the grain,and the damage degrees inside the grain under different loading times and loading forces were analyzed.The results showed that the average threshing force required for rice grains is 1.57 N(variance is 0.0529),and the critical impact forces for plastic deformation and brittle fracture of the grains during threshing are 138.79 N and 145.77 N.Since the threshing force during the threshing process was 43.9-71.9 N,it could be known from the internal damage model that the grain is in the safe loading area.Under the same load,the vertical pressure causes the most damage,the lateral pressure takes second place,and the positive pressure was the least.The results of this study can provide a basis for the development of combine harvester and rice grains damage evaluation.