The experiments of primary and secondary instabilities with controlled excitation are carried out on a swept flat plate to study the process leading to the final breakdown of laminar flow. Two types of high frequency ...The experiments of primary and secondary instabilities with controlled excitation are carried out on a swept flat plate to study the process leading to the final breakdown of laminar flow. Two types of high frequency secondary instabilities are identified. The most amplified mode is centered about the inflection point of the crosswise profile of the boundary layer and is interpreted as inflectional instability, the other occurs in the one third of the boundary layer from the wall. The high frequency disturbances are highly amplified but they also saturate similarly to the primary and nonlinearly generated disturbances. Their main effect in the final breakdown seems interact with the disturbances is developed and thus widens the frequency spectrum to turbulent state.展开更多
Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insula...Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insulation consideration.The total response of the system is related to the dynamics of both pipes and the interactions between these two concentric pipes.In the current work,a theoretical model for flow-induced vibrations of a PIP structure system is proposed and analyzed in the presence of an internal axial flow and an external cross flow.The interactions between the two pipes are modeled by a linear distributed damper,a linear distributed spring and a nonlinear distributed spring along the pipe length.The unsteady hydrodynamic forces due to cross flow are modeled by two distributed van der Pol wake oscillators.The nonlinear partial differential equations for the two pipes and the wake are further discretized by the aid of Galerkin’s technique,resulting in a set of ordinary differential equations.These ordinary differential equations are further numeri cally solved by using a fourth-order Runge-Kutta integration algorithm.Phase portraits,bifurcation diagrams,an Argand diagram and oscillation shape diagrams are plotted,showing the existence of a lock-in phenomenon and figure-of-eight trajectory.The PIP system subjected to cross flow displays some interesting dynamical behaviors different from that of a single-pipe structure.展开更多
In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge mod...In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.展开更多
This paper presents a cellular automaton traffic flow model with an open boundary condition to describe the traffic flow at a roundabout crossing with an inner roundabout lane and an outer roundabout lane. The simulat...This paper presents a cellular automaton traffic flow model with an open boundary condition to describe the traffic flow at a roundabout crossing with an inner roundabout lane and an outer roundabout lane. The simulation results show that the boundary condition, bottlenecks and the self-organization affect the traffic flow at the roundabout crossing. Because of the effect of bottlenecks, jams easily appear on the inner roundabout lane. To improve the capacity of the roundabout system, proper values of the enter probability α and the out probability βcan be chosen.展开更多
Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the...Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the jet diameter(d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of enhancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.展开更多
In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of ...In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow.展开更多
To get the sustainable society, the hydropower with not only the large but also the small/mini/micro capacities has been paid attention to in the power generation. The cross flow turbine can work effectively at the co...To get the sustainable society, the hydropower with not only the large but also the small/mini/micro capacities has been paid attention to in the power generation. The cross flow turbine can work effectively at the comparatively low head and/or low discharge, then the runner and the turbine profile has been optimizing. In this paper, the model turbine was prepared in accordance with the traditional design, and the performance and the flow condition were investigated experimentally at the various operating conditions. The hydraulic efficiency is doubtlessly maximal while the guide vane is at the normal/design position, and deteriorates in the lower discharges adjusted by the guide vane. Such deteriorations are brought from the unacceptable flow conditions in the inlet nozzle. To improve the efficiency dramatically in the lower discharge, the guide vane installed in the inlet nozzle was equipped with the current plate, and the fruitful effects of the plate on the efficiency were confirmed experimentally.展开更多
The temporal variations during 1948-2010 and vertical structures of the summer Somali and Australia cross-equatorial flows (CEFs) and the implications for the Asian summer monsoon were explored in this study. The st...The temporal variations during 1948-2010 and vertical structures of the summer Somali and Australia cross-equatorial flows (CEFs) and the implications for the Asian summer monsoon were explored in this study. The strongest southerly and northerly CEFs exist at 925 hPa and 150 hPa level, respectively. The low-level Somali (LLS) CEFs were significantly connected with the rainfall in most regions of India (especially the monsoon regions), except in a small area in southwest India. In comparison to the climatology, the low- level Australia (LLA) CEFs exhibited stronger variations at interannual time scale and are more closely connected to the East Asian summer monsoon circulation than to the LLS CEFs. The East Asian summer monsoon circulation anomalies related to stronger LLA CEFs were associ- ated with less water vapor content and less rainfall in the region between the middle Yellow River and Yangtze River and with more water vapor and more rainfall in southern China. The sea-surface tempera- ture anomalies east of Australia related to summer LLA CEFs emerge in spring and persist into summer, with implications for the seasonal prediction of summer rainfall in East Asia. The connection between the LLA CEFs and East Asian summer monsoon rainfall may be partly due to its linkage with E1 Nino-Southern Oscillation. In addition, both the LLA and LLS CEFs .exhibited interdecadal shifts in the late 1970s and the late 1990s, consistent with the phase shifts of Pacific Decadal Oscillation (PDO).展开更多
Vibration in heat exchangers is one of the main problems that the industry has faced over last few decades. Vibration phenomenon in heat exchangers is of major concern for designers and process engineers since it can ...Vibration in heat exchangers is one of the main problems that the industry has faced over last few decades. Vibration phenomenon in heat exchangers is of major concern for designers and process engineers since it can lead to the tube damage, tube leakage, baffle damage, tube collision damage, fatigue, creep etc. In the present study, vibration response is analyzed on single tube located in the centre of the tube bundle having parallel triangular arrangement (60-) with P/D ratio of 1.44. The experiment is performed for two different flow conditions. This kind of experiment has not been reported in the literature. Under the first condition, the tube vibration response is analyzed when there is no internal flow in the tube and under the second condition, the response is analyzed when the internal tube flow is maintained at a constant value of 0.1 rn/s. The free stream shell side velocity ranges from 0.8 rn/s to 1.3 m/s, the reduced gap velocity varies from 1,80 to 2.66 and the Reynolds number varies from 44500 to 66000. It is observed that the internal tube flow results in larger vibration amplitudes for the tube than that without internal tube flow. It is also established that over the current range of shell side flow velocity, the turbulence is the dominant excitation mechanism for producing vibration in the tube since the amplitude varies directly with the increase in the shell side velocity. Damping has no significant effect on the vibration behavior of the tube for the current velocity range.展开更多
In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flo...In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.展开更多
The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian- Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the Worl...The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian- Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) were evaluated. Based on climatology of the twentieth-century simulations, most of models have a reason- ably realistic representation of summer monsoon WVT characterized by southeast water vapor conveyor belt over the South Indian Ocean and southwest belt from the Arabian Sea to the East Asian. The correlation coefficients between NCEP reanalysis and simulations of BCC-CSMI-1, BNU-ESM, CanESM2, FGOALS-s2, MIROC4h and MPI-ESM-LR are up to 0.8. The simulated CEF depicted by the meridional wind along the equator includes the Somali jet and eastern CEF in low atmosphere and the reverse circulation in upper atmosphere, which were generally consistent with NCEP reanalysis. Multi-model ensemble means (MME) can reproduce more reasonable climatological features in spatial distribution both of WVT and CEF. Ten models with more reasonable WVT simulations were selected for future projection studies, including BCC- CSMI-1, BNU-ESM, CanESM2, CCSM4, FGOALS-s2, FIO-ESM, GFDL-ESM2G, MRIOCS, MPI-ESM-LR and NorESM-1M. Analysis based on the future projection experiments in RCP (Representative Concentra- tion Pathway) 2.6, RCP4.5, RCP6 and RCP8.5 show that the global warming forced by different RCP scenarios will results in enhanced WVT over the Indian area and the west Pacific and weaken WVT in the low latitudes of tropical Indian Ocean.展开更多
The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under th...The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under the current only or the wave only environment. To obtain better understanding of the jet behaviors in a realistic situation, a series of physical experiments on the initial dilution of a vertical round jet in the wavy cross-flow environment are conducted. The diluted processes of the jet are recorded by a high-resolution camcorder and the concentration fields of the jet are measured with a peristaltic suction pumping system. When the jet is discharged into the wavy cross-flow environment, a distinctive phenomenon, namely "effluent clouds", is observed. According to the quantitative measurements, the jet width in the wavy cross-flow environment increases more significantly than that does in the cross-flow only environment, indicating that the waves impose a positive effect on the enhancement of jet initial dilution. In order to generalize the experimental findings, a comprehensive velocity scale ua and a characteristic length scale l are introduced. Through dimensional analysis, it is found that the dimensionless centerline concentration trajectories cy/l is in proportion to 1/3 power of the dimensionless downstream distance x/l, and the dimensionless centerline dilution 2c aS Q/(u l) is proportional to the square of the dimensionless centerline trajectory cy/l. Several empirical equations are then derived by using the Froude number of cross-flow Frc as a reference coefficient. This paper provides a better understanding and new estimations of the jet initial dilution under the combined effect of waves and cross-flow current.展开更多
The mixing characteristics of particles such as dredged sediment of variable size discharged into cross flow are studied by a 3D numerical modal, which is developed to model the particle-fluid two-phase flow. The Eule...The mixing characteristics of particles such as dredged sediment of variable size discharged into cross flow are studied by a 3D numerical modal, which is developed to model the particle-fluid two-phase flow. The Eulerian method with the modified k- ε parameterization of turbulence for the fluid phase is used to solve fluid phase, while a Lagrangian method for the sohd phase (particles), both the processes are coupled through the momentmn sources. In the model the wake turbulence induced by particles has been included as additional source term in the k - ε model; and the variable drift velocities of the particles are treated efficiently by the Lagrangian method in which the particles are tracked explicitly and the diffusion process is approximated by a random walk model. The hydrodynamic behavior of dumping a cloud of particles is governed by the total buoyancy of the cloud, the drag force on each particle and the velocity of cross-flow. The computed results show a roughly linear relationship between the displacement of the frontal position and the longitudi- nal width of the particle cloud. The particle size in the cloud and the velocity of cross flow dominate the flow behavior. The computed results are compared with the results of laboratory experiments and satisfactory agreement is obtained.展开更多
In this paper we use the Green function method to solve the problem of steady one dimensional flow of an incompressible viscous, electrically conducting fluid through a pipe with partial circular ring cross sec- tion ...In this paper we use the Green function method to solve the problem of steady one dimensional flow of an incompressible viscous, electrically conducting fluid through a pipe with partial circular ring cross sec- tion and one with annular cross section, in the presence of an applied transverse uniform magnetic field, We ob- tain analytic solutions and carry out some numerical calculations of the velocity distribution and induced magnet- ic field.展开更多
An analysis is presented to study the dual nature of solutions for the forced convective boundary layer flow and heat transfer in a cross flow with viscous dissipation terms in the energy equation. The governing equat...An analysis is presented to study the dual nature of solutions for the forced convective boundary layer flow and heat transfer in a cross flow with viscous dissipation terms in the energy equation. The governing equations are transformed into a set of three self-similar ordinary differential equations by similarity transformations. These equations are solved numerically using the very efficient shooting method. This study reveals that the dual solutions of the transformed similarity equations for velocity and temperature distributions exist for certain values of the moving parameter, Prandtl number, and Eckert numbers. The reverse heat flux is observed for larger Eckert numbers; that is, heat absorption at the wall occurs.展开更多
This study investigates the vertical structure of variability in the cross-equatorial flows(CEFs)over the Maritime Continent and Indian Ocean in boreal summer,based on three reanalysis datasets:ERA-Interim,JRA-55 and ...This study investigates the vertical structure of variability in the cross-equatorial flows(CEFs)over the Maritime Continent and Indian Ocean in boreal summer,based on three reanalysis datasets:ERA-Interim,JRA-55 and NCEP-2.The results show a high consistency in the interannual variability among the reanalysis datasets,especially between ERAInterim and JRA-55,while great uncertainty exists in the decadal or long-term changes of CEFs.Further analyses on the interannual variability in CEFs indicate that there is a significant negative relationship between the upper-and lower-level CEFs over the Maritime Continent—that is,the northerlies at the upper level and southerlies at the lower level are both enhanced or weakened.This seesaw pattern is also significantly related to the CEFs over the Indian Ocean at the upper level and lower level(i.e.,the Somali jet).This close relationship between the upper-and lower-level CEFs and between the Maritime Continent and Indian Ocean is manifested as the leading mode of equatorial meridional winds in the vertical-zonal section over the Maritime Continent and Indian Ocean.Finally,it is found that ENSO is closely related to the vertical leading mode,and to all the CEFs at the upper and lower levels over the Maritime Continent and Indian Ocean.展开更多
New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reacto...New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.展开更多
Impacts of regional sea surface temperature(SST)anomalies on the interdecadal variation of the cross-equatorial flows(CEFs)in Eastern Hemisphere are studied using numerical simulations with a global atmospheric circul...Impacts of regional sea surface temperature(SST)anomalies on the interdecadal variation of the cross-equatorial flows(CEFs)in Eastern Hemisphere are studied using numerical simulations with a global atmospheric circulation model(NCAR CAM3)driven with 1950-2000 monthly SSTs in different marine areas(the globe,extratropics,tropics,tropical Indian Ocean-Pacific,and tropical Pacific)and ERA-40reanalysis data.Results show that all simulations,except the one driven with extratropical SSTs,can simulate the interdecadal strengthening of CEFs around Somali,120oE,and 150oE that occurred in the midand late-1970s.Among those simulated CEFs,the interdecadal variability in Somali and its interdecadal relationship with the East Asian summer monsoon are in better agreement with the observations,suggesting that changes in the SSTs of tropical oceans,especially the tropical Pacific,play a crucial role in the interdecadal variability of CEFs in Somali.The interdecadal change of CEFs in Somali is highly associated with the interdecadal variation of tropical Pacific SST.As the interdecadal warmer(colder)SST happens in the tropical Pacific,a"sandwich"pattern of SST anomalies,i.e."+,-,+"("-,+,-"),will occur in the eastern tropical Pacific from north to south with a pair of anomalous anticyclone(cyclone)at the lower troposphere;the pair links to another pair of anomalous cyclone(anticyclone)in the tropical Indian Ocean through an atmospheric bridge,and thus strengthens(weakens)the CEFs in Somali.展开更多
基金supported by the National Natural Science Foundation of China[grant number 42275025]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number 2023084].
文摘The experiments of primary and secondary instabilities with controlled excitation are carried out on a swept flat plate to study the process leading to the final breakdown of laminar flow. Two types of high frequency secondary instabilities are identified. The most amplified mode is centered about the inflection point of the crosswise profile of the boundary layer and is interpreted as inflectional instability, the other occurs in the one third of the boundary layer from the wall. The high frequency disturbances are highly amplified but they also saturate similarly to the primary and nonlinearly generated disturbances. Their main effect in the final breakdown seems interact with the disturbances is developed and thus widens the frequency spectrum to turbulent state.
基金The work was supported by the National Natural Science Foundation of China(Grant 11622216).
文摘Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insulation consideration.The total response of the system is related to the dynamics of both pipes and the interactions between these two concentric pipes.In the current work,a theoretical model for flow-induced vibrations of a PIP structure system is proposed and analyzed in the presence of an internal axial flow and an external cross flow.The interactions between the two pipes are modeled by a linear distributed damper,a linear distributed spring and a nonlinear distributed spring along the pipe length.The unsteady hydrodynamic forces due to cross flow are modeled by two distributed van der Pol wake oscillators.The nonlinear partial differential equations for the two pipes and the wake are further discretized by the aid of Galerkin’s technique,resulting in a set of ordinary differential equations.These ordinary differential equations are further numeri cally solved by using a fourth-order Runge-Kutta integration algorithm.Phase portraits,bifurcation diagrams,an Argand diagram and oscillation shape diagrams are plotted,showing the existence of a lock-in phenomenon and figure-of-eight trajectory.The PIP system subjected to cross flow displays some interesting dynamical behaviors different from that of a single-pipe structure.
基金Project(U1534210)supported by the National Natural Science Foundation of ChinaProject(14JJ1003)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2015CX003)supported by the Project of Innovation-driven Plan in Central South University,ChinaProject(14JC1003)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2015T002-A)supported by the Technological Research and Development program of China Railways Cooperation
文摘In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10562001,10762005 and 10962002)
文摘This paper presents a cellular automaton traffic flow model with an open boundary condition to describe the traffic flow at a roundabout crossing with an inner roundabout lane and an outer roundabout lane. The simulation results show that the boundary condition, bottlenecks and the self-organization affect the traffic flow at the roundabout crossing. Because of the effect of bottlenecks, jams easily appear on the inner roundabout lane. To improve the capacity of the roundabout system, proper values of the enter probability α and the out probability βcan be chosen.
基金Supported by the National Natural Science Foundation of China(51106140)the Natural Science Foundation of Zhejiang Province(Z1110695)
文摘Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the jet diameter(d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of enhancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.
基金financially supported by the National Natural Science Foundation of China (No.51304213)the Open Funds of State Key Laboratory Cultivation Base for Gas Geology and Gas Control-Henan Polytechnic University of China (No.WS2013A03)the Fundamental Research Funds for Central Universities of China (No.2013QZ01)
文摘In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow.
文摘To get the sustainable society, the hydropower with not only the large but also the small/mini/micro capacities has been paid attention to in the power generation. The cross flow turbine can work effectively at the comparatively low head and/or low discharge, then the runner and the turbine profile has been optimizing. In this paper, the model turbine was prepared in accordance with the traditional design, and the performance and the flow condition were investigated experimentally at the various operating conditions. The hydraulic efficiency is doubtlessly maximal while the guide vane is at the normal/design position, and deteriorates in the lower discharges adjusted by the guide vane. Such deteriorations are brought from the unacceptable flow conditions in the inlet nozzle. To improve the efficiency dramatically in the lower discharge, the guide vane installed in the inlet nozzle was equipped with the current plate, and the fruitful effects of the plate on the efficiency were confirmed experimentally.
基金supported by the National Basic Research Program of China(Grant Nos. 2009CB421406 and 2010CB950304)the Special Fund for the Public Welfare Industry (Meteorology+1 种基金Grant Nos. GYHY201006022 and GYHY200906018)the strategic technological program of the Chinese Academy of Sciences (Grant No. XDA05090405)
文摘The temporal variations during 1948-2010 and vertical structures of the summer Somali and Australia cross-equatorial flows (CEFs) and the implications for the Asian summer monsoon were explored in this study. The strongest southerly and northerly CEFs exist at 925 hPa and 150 hPa level, respectively. The low-level Somali (LLS) CEFs were significantly connected with the rainfall in most regions of India (especially the monsoon regions), except in a small area in southwest India. In comparison to the climatology, the low- level Australia (LLA) CEFs exhibited stronger variations at interannual time scale and are more closely connected to the East Asian summer monsoon circulation than to the LLS CEFs. The East Asian summer monsoon circulation anomalies related to stronger LLA CEFs were associ- ated with less water vapor content and less rainfall in the region between the middle Yellow River and Yangtze River and with more water vapor and more rainfall in southern China. The sea-surface tempera- ture anomalies east of Australia related to summer LLA CEFs emerge in spring and persist into summer, with implications for the seasonal prediction of summer rainfall in East Asia. The connection between the LLA CEFs and East Asian summer monsoon rainfall may be partly due to its linkage with E1 Nino-Southern Oscillation. In addition, both the LLA and LLS CEFs .exhibited interdecadal shifts in the late 1970s and the late 1990s, consistent with the phase shifts of Pacific Decadal Oscillation (PDO).
基金the financial and technical support of University of Engineering and Technology, Taxila for carrying out the research
文摘Vibration in heat exchangers is one of the main problems that the industry has faced over last few decades. Vibration phenomenon in heat exchangers is of major concern for designers and process engineers since it can lead to the tube damage, tube leakage, baffle damage, tube collision damage, fatigue, creep etc. In the present study, vibration response is analyzed on single tube located in the centre of the tube bundle having parallel triangular arrangement (60-) with P/D ratio of 1.44. The experiment is performed for two different flow conditions. This kind of experiment has not been reported in the literature. Under the first condition, the tube vibration response is analyzed when there is no internal flow in the tube and under the second condition, the response is analyzed when the internal tube flow is maintained at a constant value of 0.1 rn/s. The free stream shell side velocity ranges from 0.8 rn/s to 1.3 m/s, the reduced gap velocity varies from 1,80 to 2.66 and the Reynolds number varies from 44500 to 66000. It is observed that the internal tube flow results in larger vibration amplitudes for the tube than that without internal tube flow. It is also established that over the current range of shell side flow velocity, the turbulence is the dominant excitation mechanism for producing vibration in the tube since the amplitude varies directly with the increase in the shell side velocity. Damping has no significant effect on the vibration behavior of the tube for the current velocity range.
基金This project was financially supported by the High Technology Research and Developmant Programof China (GrantNo.2006AA09Z356) the National Natural Science Foundation of China (Grant No.503795)
文摘In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.
基金supported by the National Basic Research Program of China(973 Program)under Grant 2010CB950500 and 2010CB950304the Scientific Research Foundation of the First Institute of Oceanography,State Oceanic Administration(Grant No.GY02-2001G26)the National Natural Science Foundation of China under Grant No.41206026
文摘The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian- Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) were evaluated. Based on climatology of the twentieth-century simulations, most of models have a reason- ably realistic representation of summer monsoon WVT characterized by southeast water vapor conveyor belt over the South Indian Ocean and southwest belt from the Arabian Sea to the East Asian. The correlation coefficients between NCEP reanalysis and simulations of BCC-CSMI-1, BNU-ESM, CanESM2, FGOALS-s2, MIROC4h and MPI-ESM-LR are up to 0.8. The simulated CEF depicted by the meridional wind along the equator includes the Somali jet and eastern CEF in low atmosphere and the reverse circulation in upper atmosphere, which were generally consistent with NCEP reanalysis. Multi-model ensemble means (MME) can reproduce more reasonable climatological features in spatial distribution both of WVT and CEF. Ten models with more reasonable WVT simulations were selected for future projection studies, including BCC- CSMI-1, BNU-ESM, CanESM2, CCSM4, FGOALS-s2, FIO-ESM, GFDL-ESM2G, MRIOCS, MPI-ESM-LR and NorESM-1M. Analysis based on the future projection experiments in RCP (Representative Concentra- tion Pathway) 2.6, RCP4.5, RCP6 and RCP8.5 show that the global warming forced by different RCP scenarios will results in enhanced WVT over the Indian area and the west Pacific and weaken WVT in the low latitudes of tropical Indian Ocean.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51379072 and 51309092)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120094110016)+1 种基金the‘111’Project of the Ministry of Education and the State Administration of Foreign Experts AffairsChina(Grant No.B12032)
文摘The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under the current only or the wave only environment. To obtain better understanding of the jet behaviors in a realistic situation, a series of physical experiments on the initial dilution of a vertical round jet in the wavy cross-flow environment are conducted. The diluted processes of the jet are recorded by a high-resolution camcorder and the concentration fields of the jet are measured with a peristaltic suction pumping system. When the jet is discharged into the wavy cross-flow environment, a distinctive phenomenon, namely "effluent clouds", is observed. According to the quantitative measurements, the jet width in the wavy cross-flow environment increases more significantly than that does in the cross-flow only environment, indicating that the waves impose a positive effect on the enhancement of jet initial dilution. In order to generalize the experimental findings, a comprehensive velocity scale ua and a characteristic length scale l are introduced. Through dimensional analysis, it is found that the dimensionless centerline concentration trajectories cy/l is in proportion to 1/3 power of the dimensionless downstream distance x/l, and the dimensionless centerline dilution 2c aS Q/(u l) is proportional to the square of the dimensionless centerline trajectory cy/l. Several empirical equations are then derived by using the Froude number of cross-flow Frc as a reference coefficient. This paper provides a better understanding and new estimations of the jet initial dilution under the combined effect of waves and cross-flow current.
基金This work was supported by a grant fromthe Research Grant Council of the Hong Kong Special Administrative Region(Project No5033/98E)
文摘The mixing characteristics of particles such as dredged sediment of variable size discharged into cross flow are studied by a 3D numerical modal, which is developed to model the particle-fluid two-phase flow. The Eulerian method with the modified k- ε parameterization of turbulence for the fluid phase is used to solve fluid phase, while a Lagrangian method for the sohd phase (particles), both the processes are coupled through the momentmn sources. In the model the wake turbulence induced by particles has been included as additional source term in the k - ε model; and the variable drift velocities of the particles are treated efficiently by the Lagrangian method in which the particles are tracked explicitly and the diffusion process is approximated by a random walk model. The hydrodynamic behavior of dumping a cloud of particles is governed by the total buoyancy of the cloud, the drag force on each particle and the velocity of cross-flow. The computed results show a roughly linear relationship between the displacement of the frontal position and the longitudi- nal width of the particle cloud. The particle size in the cloud and the velocity of cross flow dominate the flow behavior. The computed results are compared with the results of laboratory experiments and satisfactory agreement is obtained.
文摘In this paper we use the Green function method to solve the problem of steady one dimensional flow of an incompressible viscous, electrically conducting fluid through a pipe with partial circular ring cross sec- tion and one with annular cross section, in the presence of an applied transverse uniform magnetic field, We ob- tain analytic solutions and carry out some numerical calculations of the velocity distribution and induced magnet- ic field.
文摘An analysis is presented to study the dual nature of solutions for the forced convective boundary layer flow and heat transfer in a cross flow with viscous dissipation terms in the energy equation. The governing equations are transformed into a set of three self-similar ordinary differential equations by similarity transformations. These equations are solved numerically using the very efficient shooting method. This study reveals that the dual solutions of the transformed similarity equations for velocity and temperature distributions exist for certain values of the moving parameter, Prandtl number, and Eckert numbers. The reverse heat flux is observed for larger Eckert numbers; that is, heat absorption at the wall occurs.
基金supported by the National Natural Science Foundation of China (Grant No. 41721004)
文摘This study investigates the vertical structure of variability in the cross-equatorial flows(CEFs)over the Maritime Continent and Indian Ocean in boreal summer,based on three reanalysis datasets:ERA-Interim,JRA-55 and NCEP-2.The results show a high consistency in the interannual variability among the reanalysis datasets,especially between ERAInterim and JRA-55,while great uncertainty exists in the decadal or long-term changes of CEFs.Further analyses on the interannual variability in CEFs indicate that there is a significant negative relationship between the upper-and lower-level CEFs over the Maritime Continent—that is,the northerlies at the upper level and southerlies at the lower level are both enhanced or weakened.This seesaw pattern is also significantly related to the CEFs over the Indian Ocean at the upper level and lower level(i.e.,the Somali jet).This close relationship between the upper-and lower-level CEFs and between the Maritime Continent and Indian Ocean is manifested as the leading mode of equatorial meridional winds in the vertical-zonal section over the Maritime Continent and Indian Ocean.Finally,it is found that ENSO is closely related to the vertical leading mode,and to all the CEFs at the upper and lower levels over the Maritime Continent and Indian Ocean.
基金financially supported by the National Key Research & Development Program of China (2016YFB0301600)
文摘New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.
基金National Basic Research Program of China(2013CB4302022012CB955200)+2 种基金Special Program for China Meteorology Trade(GYHY201306020)Basic Natural Science Research of Jiangsu High Institutions(12KJB170007,10KJB170007)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Impacts of regional sea surface temperature(SST)anomalies on the interdecadal variation of the cross-equatorial flows(CEFs)in Eastern Hemisphere are studied using numerical simulations with a global atmospheric circulation model(NCAR CAM3)driven with 1950-2000 monthly SSTs in different marine areas(the globe,extratropics,tropics,tropical Indian Ocean-Pacific,and tropical Pacific)and ERA-40reanalysis data.Results show that all simulations,except the one driven with extratropical SSTs,can simulate the interdecadal strengthening of CEFs around Somali,120oE,and 150oE that occurred in the midand late-1970s.Among those simulated CEFs,the interdecadal variability in Somali and its interdecadal relationship with the East Asian summer monsoon are in better agreement with the observations,suggesting that changes in the SSTs of tropical oceans,especially the tropical Pacific,play a crucial role in the interdecadal variability of CEFs in Somali.The interdecadal change of CEFs in Somali is highly associated with the interdecadal variation of tropical Pacific SST.As the interdecadal warmer(colder)SST happens in the tropical Pacific,a"sandwich"pattern of SST anomalies,i.e."+,-,+"("-,+,-"),will occur in the eastern tropical Pacific from north to south with a pair of anomalous anticyclone(cyclone)at the lower troposphere;the pair links to another pair of anomalous cyclone(anticyclone)in the tropical Indian Ocean through an atmospheric bridge,and thus strengthens(weakens)the CEFs in Somali.